We propose distributed scheduling algorithms that guarantee a constant fraction of the maximum throughput for typical wireless topologies, and have O(1) delay and complexity in the network size. Our algorithms resolve collisions among pairs of conflicting nodes by assigning a master-slave hierarchy. When the master-slave hierarchy is chosen randomly, our algorithm matches the throughput performance of the maximal scheduling policies, with a complexity and delay that do not scale with network size. When the master-slave hierarchy is chosen based on the network topology, the throughput performance of our algorithm is characterized by a parameter of the conflict graph called the master-interference degree. For commonly-used conflict-graph topologies, our results lead to the best known throughput guarantees among the algorithms that have O(1) delay and complexity. Numerical results indicate that our algorithms outperform the existing O(1) complexity algorithms like Q-CSMA.
more »
« less
Understanding lifecycle management complexity of datacenter topologies
Most recent datacenter topology designs have focused on performance properties such as latency and throughput. In this paper, we explore a new dimension, life cycle management complexity, which attempts to understand the complexity of deploying a topology and expanding it. By analyzing current practice in lifecycle management, we devise complexity metrics for lifecycle management, and show that existing topology classes have low lifecycle management complexity by some measures, but not by others. Motivated by this, we design a new class of topologies, FatClique, that, while being performance-equivalent to existing topologies, is comparable to, or better than them by all our lifecycle management complexity metrics.
more »
« less
- Award ID(s):
- 1827977
- PAR ID:
- 10095405
- Date Published:
- Journal Name:
- 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Interconnection network topology is critical for the overall performance of HPC systems. While many regular and irregular topologies have been proposed in the past, recent work has shown the promise of shortcut-augmented topologies that offer multi-fold reduction in network diameter and hop count over conventional topologies. However, the large number of possible shortcuts creates an enormous design space for this new type of topology, and existing approaches are extremely slow and do not find shortcuts that are globally optimal. In this paper, we propose an efficient heuristic approach, called EdgeCut, which generates high-quality shortcut-augmented topologies. EdgeCut can identify more globally useful shortcuts by making its considerations from the perspective of edges instead of vertices. An additional implementation is proposed that approximates the costly all-pair shortest paths calculation, thereby further speeding up the scheme. Quantitative comparisons over prior work show that the proposed approach achieves a 1982× reduction in search time while generating better or equivalent topologies in 94.9% of the evaluated cases.more » « less
-
We present Contra, a system for performance-aware routing that can adapt to traffic changes at hardware speeds. While point solutions exist for a fixed topology (e.g., a Fattree) with a fixed routing policy (e.g., use least utilized paths), Contra can operate seamlessly over any network topology and a wide variety of sophisticated routing policies. Users of Contra write network-wide policies that rank network paths given their current performance. A compiler then analyzes such policies in conjunction with the network topology and decomposes them into switch-local P4 programs, which collectively implement a new, specialized distance-vector protocol. This protocol generates compact probes that traverse the network, gathering path metrics to optimize for the user policy dynamically. Switches respond to changing network conditions by routing flowlets along the best policy-compliant paths. Our experiments show that Contra scales to large networks, and that in terms of flow completion times, it is competitive with hand-crafted systems that have been customized for specific topologies and policies.more » « less
-
null (Ed.)While prior work has explored many proposed datacenter designs, only two designs, Clos-based and expander-based, are generally considered practical because they can scale using commodity switching chips. Prior work has used two diferent metrics, bisection band- width and throughput, for evaluating these topologies at scale. Little is known, theoretically or practically, how these metrics relate to each other. Exploiting characteristics of these topologies, we prove an upper bound on their throughput, then show that this upper bound better estimates worst-case throughput than all previously proposed throughput estimators and scales better than most of them. Using this upper bound, we show that for expander-based topologies, unlike Clos, beyond a certain size of the network, no topology can have full throughput, even if it has full bisection band- width; in fact, even relatively small expander-based topologies fail to achieve full throughput. We conclude by showing that using throughput to evaluate datacenter performance instead of bisection bandwidth can alter conclusions in prior work about datacenter cost, manageability, and reliability.more » « less
-
The dynamic response of power grids to small transient events or persistent stochastic disturbances influences their stable operation. This paper studies the effect of topology on the linear time-invariant dynamics of power networks. For a variety of stability metrics, a unified framework based on the H2 -norm of the system is presented. The proposed framework assesses the robustness of power grids to small disturbances and is used to study the optimal placement of new lines on existing networks as well as the design of radial (tree) and meshed (loopy) topologies for new networks. Although the design task can be posed as a mixed-integer semidefinite program (MI-SDP), its performance does not scale well with network size. Using McCormick relaxation, the topology design problem can be reformulated as a mixed-integer linear program (MILP). To improve the computation time, graphical properties are exploited to provide tighter bounds on the continuous optimization variables. Numerical tests on the IEEE 39-bus feeder demonstrate the efficacy of the optimal topology in minimizing disturbances.more » « less
An official website of the United States government

