skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hierarchical Scheduling Algorithms with Throughput Guarantees and Low Delay
We propose distributed scheduling algorithms that guarantee a constant fraction of the maximum throughput for typical wireless topologies, and have O(1) delay and complexity in the network size. Our algorithms resolve collisions among pairs of conflicting nodes by assigning a master-slave hierarchy. When the master-slave hierarchy is chosen randomly, our algorithm matches the throughput performance of the maximal scheduling policies, with a complexity and delay that do not scale with network size. When the master-slave hierarchy is chosen based on the network topology, the throughput performance of our algorithm is characterized by a parameter of the conflict graph called the master-interference degree. For commonly-used conflict-graph topologies, our results lead to the best known throughput guarantees among the algorithms that have O(1) delay and complexity. Numerical results indicate that our algorithms outperform the existing O(1) complexity algorithms like Q-CSMA.  more » « less
Award ID(s):
1749864
PAR ID:
10065493
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt)
Page Range / eLocation ID:
1-8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this work, we first propose a parallel batch switching algorithm called Small-Batch Queue-Proportional Sampling (SB-QPS). Compared to other batch switching algorithms, SB-QPS significantly reduces the batch size without sacrificing the throughput performance and hence has much lower delay when traffic load is light to moderate. It also achieves the lowest possible time complexity of O(1) per matching computation per port, via parallelization. We then propose another algorithm called Sliding-Window QPS (SW-QPS). SW-QPS retains and enhances all benefits of SB-QPS, and reduces the batching delay to zero via a novel switching framework called sliding-window switching. In addition, SW-QPS computes matchings of much higher qualities, as measured by the resulting throughput and delay performances, than QPS-1, the state-of-the-art regular switching algorithm that builds upon the same underlying bipartite matching algorithm. 
    more » « less
  2. We study the problem of scheduling VMs (Virtual Machines) in a distributed server platform, motivated by cloud computing applications. The VMs arrive dynamically over time to the system, and require a certain amount of resources (e.g. memory, CPU, etc) for the duration of their service. To avoid costly preemptions, we consider non-preemptive scheduling: Each VM has to be assigned to a server which has enough residual capacity to accommodate it, and once a VM is assigned to a server, its service cannot be disrupted (preempted). Prior approaches to this problem either have high complexity, require synchronization among the servers, or yield queue sizes/delays which are excessively large. We propose a non-preemptive scheduling algorithm that resolves these issues. In general, given an approximation algorithm to Knapsack with approximation ratio r , our scheduling algorithm can provide rβ fraction of the throughput region for β < r. In the special case of a greedy approximation algorithm to Knapsack, we further show that this condition can be relaxed to β<1. The parameters β and r can be tuned to provide a tradeoff between achievable throughput, delay, and computational complexity of the scheduling algorithm. Finally extensive simulation results using both synthetic and real traffic traces are presented to verify the performance of our algorithm. 
    more » « less
  3. Full-duplex (FD) wireless is an attractive communication paradigm with high potential for improving network capacity and reducing delay in wireless networks. Despite significant progress on the physical layer development, the challenges associated with developing medium access control (MAC) protocols for heterogeneous networks composed of both legacy half-duplex (HD) and emerging FD devices have not been fully addressed. In [1], we focused on the design and performance evaluation of scheduling algorithms for heterogeneous HD-FD networks and presented the distributed Hybrid-Greedy Maximal Scheduling (H-GMS) algorithm. H-GMS combines the centralized Greedy Maximal Scheduling (GMS) and a distributed queue-based random-access mechanism, and is throughput-optimal. In this paper, we analyze the delay performance of H-GMS by deriving two lower bounds on the average queue length. We also evaluate the fairness and delay performance of H-GMS via extensive simulations. We show that in heterogeneous HD-FD networks, H-GMS achieves$$16-30\times$$ better delay performance and improves fairness between FD and HD users by up to 50% compared with the fully decentralized Q-CSMA algorithm. 
    more » « less
  4. There is a rich theory and plethora of algorithms in the literature aiming at the efficient scheduling of stochastic networks. These solutions are predominantly designed under the assumption of traffic demands that are independently generated at network nodes, without any requirement for synchronization among their received services. In this work, we note that many applications, including cloud computing, virtual reality, gaming, autonomous vehicular networks and collaborative design, generate traffic simultaneously at multiple nodes when they arrive, with possibly non-uniform file sizes, whose performance relies on the synchronous completion of the traffic across the network. This calls for the design of new scheduling algorithms that aims to coordinate the service of packets of the same traffic across the network. Towards this end, we propose a novel scheduling algorithm that not only accounts for the heterogeneity of the file size distributions, but also works towards synchronizing the completion time of the same traffic stream across the network. This is achieved by employing two insights that emanate from key motivating examples we develop: (1) the normalization of traffic load with respect to the non-uniform file sizes; and (2) the incorporation of deviation of normalized loads across network nodes that serve synchronized traffic. After establishing the throughput-optimality of our algorithm in general stochastic networks, we perform extensive simulations under various (spanning both wired and wireless) settings to reveal the potential completion time gains that it yields over other throughput-optimal strategies designed under the assumption of independent traffic generation. 
    more » « less
  5. There is a rich theory and plethora of algorithms in the literature aiming at the efficient scheduling of stochastic networks. These solutions are predominantly designed under the assumption of traffic demands that are independently generated at network nodes, without any requirement for synchronization among their received services. In this work, we note that many applications, including cloud computing, virtual reality, gaming, autonomous vehicular networks and collaborative design, generate traffic simultaneously at multiple nodes when they arrive, with possibly non-uniform file sizes, whose performance relies on the synchronous completion of the traffic across the network. This calls for the design of new scheduling algorithms that aims to coordinate the service of packets of the same traffic across the network. Towards this end, we propose a novel scheduling algorithm that not only accounts for the heterogeneity of the file size distributions, but also works towards synchronizing the completion time of the same traffic stream across the network. This is achieved by employing two insights that emanate from key motivating examples we develop: (1) the normalization of traffic load with respect to the non-uniform file sizes; and (2) the incorporation of deviation of normalized loads across network nodes that serve synchronized traffic. After establishing the throughput-optimality of our algorithm in general stochastic networks, we perform extensive simulations under various (spanning both wired and wireless) settings to reveal the potential completion time gains that it yields over other throughput-optimal strategies designed under the assumption of independent traffic generation. 
    more » « less