Abstract Self‐supervised neural language models have recently achieved unprecedented success from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking‐based pre‐trained language models are not designed for generative design, and their black‐box nature makes it difficult to interpret their design logic. Here a Blank‐filling Language Model for Materials (BLMM) Crystal Transformer is proposed, a neural network‐based probabilistic generative model for generative and tinkering design of inorganic materials. The model is built on the blank‐filling language model for text generation and has demonstrated unique advantages in learning the “materials grammars” together with high‐quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7% charge neutrality and 84.8% balanced electronegativity, which are more than four and eight times higher compared to a pseudo‐random sampling baseline. The probabilistic generation process of BLMM allows it to recommend materials tinkering operations based on learned materials chemistry, which makes it useful for materials doping. The model is applied to discover a set of new materials as validated using the Density Functional Theory (DFT) calculations. This work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user‐friendly web app for tinkering materials design has been developed and can be accessed freely atwww.materialsatlas.org/blmtinker.
more »
« less
Adaptive Learning Material Recommendation in Online Language Education
Recommending personalized learning materials for online language learning is challenging because we typically lack data about the student’s ability and the relative difficulty of learning materials. This makes it hard to recommend appropriate content that matches the student’s prior knowledge. In this paper, we propose a refined hierarchical knowledge structure to model vocabulary knowledge, which enables us to automatically organize the authentic and up-to-date learning materials collected from the internet. Based on this knowledge structure, we then introduce a hybrid approach to recommend learning materials that adapts to a student’s language level. We evaluate our work with an online Japanese learning tool and the results suggest adding adaptivity into material recommendation significantly increases student engagement.
more »
« less
- Award ID(s):
- 1657176
- PAR ID:
- 10095418
- Date Published:
- Journal Name:
- ArXiv.org
- ISSN:
- 2331-8422
- Page Range / eLocation ID:
- https://arxiv.org/abs/1905.10893
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper reports the findings of an empirical study on the effects and nature of self explanation during source code comprehension learning activities in the context of learning computer programming language Java. Our study shows that self explanation helps learning and there is a strong positive correlation between the volume of self-explanation students produce and how much they learn. Furthermore, selfexplanations as an instructional strategy has no discrepancy based on student’s prior knowledge. We found that participants explain target code examples using a combination of language, code references, and mathematical expressions. This is not surprising given the nature of the target item, a computer program, but this indicates that automatically evaluating such self-explanations may require novel techniques compared to self-explanations of narrative or scientific texts.more » « less
-
This paper reports the findings of an empirical study on the effects and nature of self explanation during source code comprehension learning activities in the context of learning computer programming language Java. Our study shows that self explanation helps learning and there is a strong positive correlation between the volume of self-explanation students produce and how much they learn. Furthermore, selfexplanations as an instructional strategy has no discrepancy based on student’s prior knowledge. We found that participants explain target code examples using a combination of language, code references, and mathematical expressions. This is not surprising given the nature of the target item, a computer program, but this indicates that automatically evaluating such self-explanations may require novel techniques compared to self-explanations of narrative or scientific texts.more » « less
-
This paper reports the findings of an empirical study on the effects and nature of self explanation during source code comprehension learning activities in the context of learning computer programming language Java. Our study shows that self explanation helps learning and there is a strong positive correlation between the volume of self-explanation students produce and how much they learn. Furthermore, selfexplanations as an instructional strategy has no discrepancy based on student’s prior knowledge. We found that participants explain target code examples using a combination of language, code references, and mathematical expressions. This is not surprising given the nature of the target item, a computer program, but this indicates that automatically evaluating such self-explanations may require novel techniques compared to self-explanations of narrative or scientific texts.more » « less
-
We analyze teachers’ written feedback to students in an online learning environment, specifically a setting in which high school students in Uruguay are learning English as a foreign language. How complex should teachers’ feedback be? Should it be adapted to each student’s English profi- ciency level? How does teacher feedback affect the probability of engaging the student in a conversation? To explore these questions, we conducted both parametric (multilevel modeling) and non-parametric (bootstrapping) analyses of 27,627 messages exchanged between 35 teachers and 1074 students in 2017 and 2018. Our results suggest: (1) Teach- ers should adapt their feedback complexity to their students’ English proficiency level. Students who receive feedback that is too complex or too basic for their level post 13- 15% fewer comments than those who receive adapted feed- back. (2) Feedback that includes a question is associated with higher odds-ratio (17.5-19) of engaging the student in conversation. (3) For students with low English proficiency, slow turnaround (feedback after 1 week) reduces this odds ratio by 0.7. These results have potential implications for online platforms offering foreign language learning services, in which it is crucial to give the best possible learning expe- rience while judiciously allocating teachers’ time.more » « less
An official website of the United States government

