skip to main content

Title: Inconsistency Investigation between Online Review Content and Ratings
Despite the tremendous role of online consumer reviews (OCRs) in facilitating consumer purchase decision making, the potential inconsistency between product ratings and review content could cause the uncertainty and confusions of prospect consumers toward a product. This research is aimed to investigate such inconsistency so as to better assist potential consumers with making purchase decisions. First, this study extracted a reviewer’s sentiments from review text via sentiment analysis. Then, it examined the correlation and inconsistency between product ratings and review sentiments via Pearson correlation coefficients (PCC) and box plots. Next, we compared such inconsistency patterns between fake and authentic reviews. Based on an analysis of 24,539 Yelp reviews, we find that although the ratings and sentiments are highly correlated, the inconsistency between the two is more salient in fake reviews than in authentic reviews. The comparison also reveals different inconsistency patterns between the two types of reviews.
Authors:
; ; ; ; ;
Award ID(s):
1912898
Publication Date:
NSF-PAR ID:
10095442
Journal Name:
Twenty-fourth Americas Conference on Information Systems
Sponsoring Org:
National Science Foundation
More Like this
  1. Information about the privacy and security of Internet of Things (IoT) devices is not readily available to consumers who want to consider it before making purchase decisions. While legislators have proposed adding succinct, consumer accessible, labels, they do not provide guidance on the content of these labels. In this paper, we report on the results of a series of interviews and surveys with privacy and security experts, as well as consumers, where we explore and test the design space of the content to include on an IoT privacy and security label. We conduct an expert elicitation study by following amore »three-round Delphi process with 22 privacy and security experts to identify the factors that experts believed are important for consumers when comparing the privacy and security of IoT devices to inform their purchase decisions. Based on how critical experts believed each factor is in conveying risk to consumers, we distributed these factors across two layers—a primary layer to display on the product package itself or prominently on a website, and a secondary layer available online through a web link or a QR code. We report on the experts’ rationale and arguments used to support their choice of factors. Moreover, to study how consumers would perceive the privacy and security information specified by experts, we conducted a series of semi-structured interviews with 15 participants, who had purchased at least one IoT device (smart home device or wearable). Based on the results of our expert elicitation and consumer studies, we propose a prototype privacy and security label to help consumers make more informed IoTrelated purchase decisions.« less
  2. Recommendation for e-commerce with a mix of durable and nondurable goods has characteristics that distinguish it from the well-studied media recommendation problem. The demand for items is a combined effect of form utility and time utility, i.e., a product must both be intrinsically appealing to a consumer and the time must be right for purchase. In particular for durable goods, time utility is a function of inter-purchase duration within product category because consumers are unlikely to purchase two items in the same category in close temporal succession. Moreover, purchase data, in contrast to rating data, is implicit with non-purchases notmore »necessarily indicating dislike. Together, these issues give rise to the positive-unlabeled demand-aware recommendation problem that we pose via joint low-rank tensor completion and product category inter-purchase duration vector estimation. We further relax this problem and propose a highly scalable alternating minimization approach with which we can solve problems with millions of users and millions of items in a single thread. We also show superior prediction accuracies on multiple real-world datasets.« less
  3. Online consumer reviews contain rich yet implicit information regarding consumers’ preferences for specific aspects of products/services. Extracting aspects from online consumer reviews has been recognized as a valuable step in performing fine-grained analytical tasks (e.g. aspect-based sentiment analysis). Extant approaches to aspect extraction are dominated by discrete models. Despite explosive research interests in continuous-space language models in recent years, these models have yet to be explored for the task of extracting product/service aspects from online consumer reviews. In addition, previous continuous-space models for information extraction have largely overlooked the role of semantic information embedded in texts. In this study, wemore »propose an approach of aspect extraction that leverages semantic information from WordNet in conjunction of building continuous-space language models from review texts. The experiment results with online restaurant reviews demonstrate that the WordNet-guided continuous-space language models outperform both discrete models and continuous-space language models without incorporating the semantic information. The research findings have important implications for understanding consumer preferences and improving business performances.« less
  4. In pursuing the problem of (e)valuation in sociology, this paper is concerned with the collaborative dynamics that create value. Based on a unique dataset of 225 collaborations among craft brewers, we analyze which combinations of organizations increase consumer ratings of the beers produced. Craft brewing provides a fascinating laboratory for the study of how consumers rate the products of collaborative formations. Collaborations between craft brewers result in one-off products, beers that exist for a limited period of time, rarely to be produced again. Such collaborations occur frequently and exist over the course of several weeks or months, until the productmore »is brewed, packaged, and distributed. At that point, collaborators return to their daily brewing operations. With the help of several research assistants, we created a dataset of craft brewer all collaborations in which at least one brewer was located in Illinois. The data are compiled from websites on which consumers rate beers: RateBeer and Untappd. Initial analyses shows that brewers that follow certain strategies are likely to collaborate with others pursuing certain strategies. For example, we find that brewers that engage in serial hook-ups are likely to do so with brewers that are outside of their core networks while monogamists are likely to seek out those who engage in serial hook-ups. These strategies have consequences for the valuation of their efforts. The products of craft brewers who collaborate with those outside of their core networks consistently receive higher consumer ratings than other forms of collaboration. We suspect that certain collaborative arrangements facilitate authenticity or novelty in the marketplace, which consumers reward with higher ratings. We plan to test hypotheses related to whether authenticity or novelty are driving changes in consumer valuations of products.« less
  5. Question-answering plays an important role in e-commerce as it allows potential customers to actively seek crucial information about products or services to help their purchase decision making. Inspired by the recent success of machine reading comprehension (MRC) on formal documents, this paper explores the potential of turning customer reviews into a large source of knowledge that can be exploited to answer user questions. We call this problem Review Reading Comprehension (RRC). To the best of our knowledge, no existing work has been done on RRC. In this work, we first build an RRC dataset called ReviewRC based on a popularmore »benchmark for aspect-based sentiment analysis. Since ReviewRC has limited training examples for RRC (and also for aspect-based sentiment analysis), we then explore a novel post-training approach on the popular language model BERT to enhance the performance of fine-tuning of BERT for RRC. To show the generality of the approach, the proposed post-training is also applied to some other review-based tasks such as aspect extraction and aspect sentiment classification in aspect-based sentiment analysis. Experimental results demonstrate that the proposed post-training is highly effective.« less