skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Using Text-Based Causal Inference to Disentangle Factors Influencing Online Review Ratings
Online reviews provide valuable insights into the perceived quality of facets of a product or service. While aspect-based sentiment analysis has focused on extracting these facets from reviews, there is less work understanding the impact of each aspect on overall perception. This is particularly challenging given correlations among aspects, making it difficult to isolate the effects of each. This paper introduces a methodology based on recent advances in text-based causal analysis, specifically CausalBERT, to disentangle the effect of each factor on overall review ratings. We enhance CausalBERT with three key improvements: temperature scaling for better calibrated treatment assignment estimates; hyperparameter optimization to reduce confound overadjustment; and interpretability methods to characterize discovered confounds. In this work, we treat the textual mentions in reviews as proxies for real-world attributes. We validate our approach on real and semi-synthetic data from over 600K reviews of U.S. K-12 schools. We find that the proposed enhancements result in more reliable estimates, and that perception of school administration and performance on benchmarks are significant drivers of overall school ratings.  more » « less
Award ID(s):
2333537
PAR ID:
10629571
Author(s) / Creator(s):
; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
11259 to 11277
Format(s):
Medium: X
Location:
Albuquerque, New Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. An overall rating cannot reveal the details of user’s preferences toward each feature of a product. One widespread practice of e-commerce websites is to provide ratings on predefined aspects of the product and user-generated reviews. Most recent multi-criteria works employ aspect preferences of users or user reviews to understand the opinions and behavior of users. However, these works fail to learn how users correlate these information sources when users express their opinion about an item. In this work, we present Multi-task & Multi-Criteria Review-based Rating (MMCRR), a framework to predict the overall ratings of items by learning how users represent their preferences when using multi-criteria ratings and text reviews. We conduct extensive experiments with three real-life datasets and six baseline models. The results show that MMCRR can reduce prediction errors while learning features better from the data. 
    more » « less
  2. In the era of big data, online doctor review platforms, which enable patients to give feedback to their doctors, have become one of the most important components in healthcare systems. On one hand, they help patients to choose their doctors based on the experience of others. On the other hand, they help doctors to improve the quality of their service. Moreover, they provide important sources for us to discover common concerns of patients and existing problems in clinics, which potentially improve current healthcare systems. In this paper, we systematically investigate the dataset from one of such review platform, namely, ratemds.com, where each review for a doctor comes with an overall rating and ratings of four different aspects. A comprehensive statistical analysis is conducted first for reviews, ratings, and doctors. Then, we explore the content of reviews by extracting latent topics related to different aspects with unsupervised topic modeling techniques. As the core component of this paper, we propose a multi-task learning framework for the document-level multi-aspect sentiment classification. This task helps us to not only recover missing aspect-level ratings and detect inconsistent rating scores but also identify aspect-keywords for a given review based on ratings. The proposed model takes both features of doctors and aspect-keywords into consideration. Extensive experiments have been conducted on two subsets of ratemds dataset to demonstrate the effectiveness of the proposed model. 
    more » « less
  3. Despite the tremendous role of online consumer reviews (OCRs) in facilitating consumer purchase decision making, the potential inconsistency between product ratings and review content could cause the uncertainty and confusions of prospect consumers toward a product. This research is aimed to investigate such inconsistency so as to better assist potential consumers with making purchase decisions. First, this study extracted a reviewer’s sentiments from review text via sentiment analysis. Then, it examined the correlation and inconsistency between product ratings and review sentiments via Pearson correlation coefficients (PCC) and box plots. Next, we compared such inconsistency patterns between fake and authentic reviews. Based on an analysis of 24,539 Yelp reviews, we find that although the ratings and sentiments are highly correlated, the inconsistency between the two is more salient in fake reviews than in authentic reviews. The comparison also reveals different inconsistency patterns between the two types of reviews. 
    more » « less
  4. Cross-domain collaborative filtering recommenders exploit data from other domains (e.g., movie ratings) to predict users’ interests in a different target domain (e.g., suggest music). Most current cross-domain recommenders focus on modeling user ratings but pay limited attention to user reviews. Additionally, due to the complexity of these recommender systems, they cannot provide any information to users to support user decisions. To address these challenges, we propose Deep Hybrid Cross Domain (DHCD) model, a cross-domain neural framework, that can simultaneously predict user ratings, and provide useful information to strengthen the suggestions and support user decision across multiple domains. Specifically, DHCD enhances the predicted ratings by jointly modeling two crucial facets of users’ product assessment: ratings and reviews. To support decisions, it models and provides natural review-like sentences across domains according to user interests and item features. This model is robust in integrating user rating and review information from more than two domains. Our extensive experiments show that DHCD can significantly outperform advanced baselines in rating predictions and review generation tasks. For rating prediction tasks, it outperforms cross-domain and single-domain collaborative filtering as well as hybrid recommender systems. Furthermore, our review generation experiments suggest an improved perplexity score and transfer of review information in DHCD. 
    more » « less
  5. We present Variational Aspect-based Latent Topic Allocation (VALTA), a family of autoencoding topic models that learn aspect-based representations of reviews. VALTA defines a user-item encoder that maps bag-of-words vectors for combined reviews associated with each paired user; item onto structured embeddings, which in turn define per-aspect topic weights. We model individual reviews in a structured manner by inferring an aspect assignment for each sentence in a given review, where the per-aspect topic weights obtained by the user-item encoder serve to define a mixture over topics, conditioned on the aspect. The result is an autoencoding neural topic model for reviews, which can be trained in a fully unsupervised manner to learn topics that are structured into aspects. Experimental evaluation on large number of datasets demonstrates that aspects are interpretable, yield higher coherence scores than non-structured autoencoding topic model variants,; can be utilized to perform aspect-based comparison; genre discovery. 
    more » « less