skip to main content


Title: Direct triplet sensitization of oligothiophene by quantum dots
Effective sensitization of triplet states is essential to many applications, including triplet–triplet annihilation based photon upconversion schemes. This work demonstrates successful triplet sensitization of a CdSe quantum dot (QD)–bound oligothiophene carboxylic acid (T6). Transient absorption spectroscopy provides direct evidence of Dexter-type triplet energy transfer from the QD to the acceptor without populating the singlet excited state or charge transfer intermediates. Analysis of T6 concentration dependent triplet formation kinetics shows that the intrinsic triplet energy transfer rate in 1 : 1 QD–T6 complexes is 0.077 ns −1 and the apparent transfer rate and efficiency can be improved by increasing the acceptor binding strength. This work demonstrates a new class of triplet acceptor molecules for QD-based upconversion systems that are more stable and tunable than the extensively studied polyacenes.  more » « less
Award ID(s):
1821863 1709182
NSF-PAR ID:
10095521
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr( iv ) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA–carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet–triplet energy transfer (TTET) processes (Δ G ∼ −0.19 eV) featured very large Stern–Volmer quenching constants ( K SV ) approaching or achieving 10 5 M −1 with bimolecular rate constants between 2 and 3 × 10 8 M −1 s −1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet–triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern–Volmer metrics support 95% quenching of the Zr( iv ) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence ( λ ex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting η UC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm −2 ) below that of solar flux integrated across the Zr( iv ) photosensitizer's absorption band (26.7 mW cm −2 ). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals. 
    more » « less
  2. The design/synthesis and characterization of organic donor–acceptor (D–A) dyads can provide precious data allowing to improve the efficiency of classical photo-induced bimolecular interactions/processes. In this report, two novel triplet D–A dyads (4 and 5) were synthesized and fully characterized. While the optical absorption and emission profiles of these new systems exhibit similar spectral structures as that of the triplet donor/sensitizer quinoidal thioamide (QDN), the transient absorption (TA) spectra of these two dyads produced new features that can be associated with triplet transients and charge transfer species. However, the kinetics of the excited-state processes/dynamics is significantly influenced by the geometrical arrangement(s) of donor/acceptor chromophores. Further analysis of the TA data suggests that the dyad with slip-stack geometry (4) is less effective in undergoing both intra- and inter-dyad triplet energy transfer than the dyad with co-facial geometry (5). Subsequently, triplet sensitization of 9,10-diphenylanthracene (DPA) using both dyads led to upconverted photoluminescence via triplet–triplet annihilation of DPA triplet transients. But, it was found that a maximum upconversion quantum yield could be achieved at a low power density using the co-facial type dyad 5. Altogether, these results provide valuable guidance in the design of triplet donor–acceptor dyads, which could be used for light-harvesting/modulation applications. 
    more » « less
  3. Abstract

    A sub‐monolayer CdS shell on PbS quantum dots (QDs) enhances triplet energy transfer (TET) by suppressing competitive charge transfer from QDs to molecules. The CdS shell increases the linear photon upconversion quantum yield (QY) from 3.5 % for PbS QDs to 5.0 % for PbS/CdS QDs when functionalized with a tetracene acceptor,5‐CT. While transient absorption spectroscopy reveals that both PbS and PbS/CdS QDs show the formation of the5‐CTtriplet (with rates of 5.91±0.60 ns−1and 1.03±0.09 ns−1respectively), ultrafast hole transfer occurs only from PbS QDs to5‐CT. Although the CdS shell decreases the TET rate, it enhances TET efficiency from 60.3±6.1 % to 71.8±6.2 % by suppressing hole transfer. Furthermore, the CdS shell prolongs the lifetime of the5‐CTtriplet and thus enhances TET from5‐CTto the rubrene emitter, further bolstering the upconverison QY.

     
    more » « less
  4. Abstract

    A sub‐monolayer CdS shell on PbS quantum dots (QDs) enhances triplet energy transfer (TET) by suppressing competitive charge transfer from QDs to molecules. The CdS shell increases the linear photon upconversion quantum yield (QY) from 3.5 % for PbS QDs to 5.0 % for PbS/CdS QDs when functionalized with a tetracene acceptor,5‐CT. While transient absorption spectroscopy reveals that both PbS and PbS/CdS QDs show the formation of the5‐CTtriplet (with rates of 5.91±0.60 ns−1and 1.03±0.09 ns−1respectively), ultrafast hole transfer occurs only from PbS QDs to5‐CT. Although the CdS shell decreases the TET rate, it enhances TET efficiency from 60.3±6.1 % to 71.8±6.2 % by suppressing hole transfer. Furthermore, the CdS shell prolongs the lifetime of the5‐CTtriplet and thus enhances TET from5‐CTto the rubrene emitter, further bolstering the upconverison QY.

     
    more » « less
  5. Abstract

    Photon upconversion may have the highest impact in biological applications because incoming photons transparent to tissue can be combined to make visible light useful for photodynamic therapy and imaging. The ability to use semiconductor nanocrystals as light absorbers for photon upconversion is important because their strong absorption profiles are synthetically tunable. In particular, the use of earth‐abundant, environmentally benign silicon quantum dots (QDs) as light absorbers for photon upconversion is very attractive. In this work, the authors demonstrate a general strategy employing both physical and chemical barriers to achieve air‐stable fusion of triplet excitons photosensitized by silicon QDs, crucial to practical applications of photon upconversion. Gel permeation chromatography (GPC) and dynamic light scattering (DLS) show that thermal hydrosilylation critical for colloidal stability and efficient triplet energy transfer creates a polymeric barrier to oxygen. This kinetic barrier to oxygen arises from the presence of cross‐linked surfactants and is complemented by the sacrificial oxidation of silicon QDs itself. Photon upconversion lasted longer than 4 days with quantum yields (QYs) as high as 7.5% (out of a maximum of 50%) using Si QD light absorbers with diphenylanthracene in methyl oleate. Oil‐in‐water micelles are air‐stable for 2 days with absolute upconversion QYs of 5.5%.

     
    more » « less