According to the theory of contextual integrity (CI), privacy norms prescribe information flows with reference to five parameters — sender, recipient, subject, information type, and transmission principle. Because privacy is grasped contextually (e.g., health, education, civic life, etc.), the values of these parameters range over contextually meaningful ontologies — of information types (or topics) and actors (subjects, senders, and recipients), in contextually defined capacities. As an alternative to predominant approaches to privacy, which were ineffective against novel information practices enabled by IT, CI was able both to pinpoint sources of disruption and provide grounds for either accepting or rejecting them. Mounting challenges from a burgeoning array of networked, sensor-enabled devices (IoT) and data-ravenous machine learning systems, similar in form though magnified in scope, call for renewed attention to theory. This Article introduces the metaphor of a data (food) chain to capture the nature of these challenges. With motion up the chain, where data of higher order is inferred from lower-order data, the crucial question is whether privacy norms governing lower-order data are sufficient for the inferred higher-order data. While CI has a response to this question, a greater challenge comes from data primitives, such as digital impulses of mouse clicks, motion detectors, and bare GPS coordinates, because they appear to have no meaning. Absent a semantics, they escape CI’s privacy norms entirely.
more »
« less
Contextual Integrity Up and Down the Data Food Chain
According to the theory of contextual integrity (CI), privacy norms prescribe information flows with reference to five parameters — sender, recipient, subject, information type, and transmission principle. Because privacy is grasped contextually (e.g., health, education, civic life, etc.), the values of these parameters range over contextually meaningful ontologies — of information types (or topics) and actors (subjects, senders, and recipients), in contextually defined capacities. As an alternative to predominant approaches to privacy, which were ineffective against novel information practices enabled by IT, CI was able both to pinpoint sources of disruption and provide grounds for either accepting or rejecting them. Mounting challenges from a burgeoning array of networked, sensor-enabled devices (IoT) and data-ravenous machine learning systems, similar in form though magnified in scope, call for renewed attention to theory. This Article introduces the metaphor of a data (food) chain to capture the nature of these challenges. With motion up the chain, where data of higher order is inferred from lower-order data, the crucial question is whether privacy norms governing lower-order data are sufficient for the inferred higher-order data. While CI has a response to this question, a greater challenge comes from data primitives, such as digital impulses of mouse clicks, motion detectors, and bare GPS coordinates, because they appear to have no meaning. Absent a semantics, they escape CI’s privacy norms entirely.
more »
« less
- Award ID(s):
- 1704527
- PAR ID:
- 10095714
- Date Published:
- Journal Name:
- Theoretical inquiries in law
- Volume:
- 20
- ISSN:
- 1565-3404
- Page Range / eLocation ID:
- 220-256
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
According to the theory of contextual integrity (CI), privacy norms prescribe information flows with reference to five parameters — sender, recipient, subject, information type, and transmission principle. Because privacy is grasped contextually (e.g., health, education, civic life, etc.), the values of these parameters range over contextually meaningful ontologies — of information types (or topics) and actors (subjects, senders, and recipients), in contextually defined capacities. As an alternative to predominant approaches to privacy, which were ineffective against novel information practices enabled by IT, CI was able both to pinpoint sources of disruption and provide grounds for either accepting or rejecting them. Mounting challenges from a burgeoning array of networked, sensor-enabled devices (IoT) and data-ravenous machine learning systems, similar in form though magnified in scope, call for renewed attention to theory. This Article introduces the metaphor of a data (food) chain to capture the nature of these challenges. With motion up the chain, where data of higher order is inferred from lower-order data, the crucial question is whether privacy norms governing lower-order data are sufficient for the inferred higher-order data. While CI has a response to this question, a greater challenge comes from data primitives, such as digital impulses of mouse clicks, motion detectors, and bare GPS coordinates, because they appear to have no meaning. Absent a semantics, they escape CI’s privacy norms entirely.more » « less
-
Web forms are one of the primary ways to collect personal information online, yet they are relatively under-studied. Unlike web tracking, data collection through web forms is explicit and contextualized. Users (i) are asked to input specific personal information types, and (ii) know the specific context (i.e., on which website and for what purpose). For web forms to be trusted by users, they must meet the common sense standards of appropriate data collection practices within a particular context (i.e., privacy norms). In this paper, we extract the privacy norms embedded within web forms through a measurement study. First, we build a specialized crawler to discover web forms on websites. We run it on 11,500 popular websites, and we create a dataset of 293K web forms. Second, to process data of this scale, we develop a cost-efficient way to annotate web forms with form types and personal information types, using text classifiers trained with assistance of large language models (LLMs). Third, by analyzing the annotated dataset, we reveal common patterns of data collection practices. We find that (i) these patterns are explained by functional necessities and legal obligations, thus reflecting privacy norms, and that (ii) deviations from the observed norms often signal unnecessary data collection. In addition, we analyze the privacy policies that accompany web forms. We show that, despite their wide adoption and use, there is a disconnect between privacy policy disclosures and the observed privacy norms.more » « less
-
Smart home cameras raise privacy concerns in part because they frequently collect data not only about the primary users who deployed them but also other parties -- who may be targets of intentional surveillance or incidental bystanders. Domestic employees working in smart homes must navigate a complex situation that blends privacy and social norms for homes, workplaces, and caregiving. This paper presents findings from 25 semi-structured interviews with domestic childcare workers in the U.S. about smart home cameras, focusing on how privacy considerations interact with the dynamics of their employer-employee relationships. We show how participants’ views on camera data collection, and their desire and ability to set conditions on data use and sharing, were affected by power differentials and norms about who should control information flows in a given context. Participants’ attitudes about employers’ cameras often hinged on how employers used the data; whether participants viewed camera use as likely to reinforce negative tendencies in the employer-employee relationship; and how camera use and disclosure might reflect existing relationship tendencies. We also suggest technical and social interventions to mitigate the adverse effects of power imbalances on domestic employees’ privacy and individual agency.more » « less
-
null (Ed.)This paper examines people’s privacy concerns, perceptions of social benefits, and acceptance of various COVID-19 control measures that harness location information using data collected through an online survey in the U.S. and South Korea. The results indicate that people have higher privacy concerns for methods that use more sensitive and private information. The results also reveal that people’s perceptions of social benefits are low when their privacy concerns are high, indicating a trade-off relationship between privacy concerns and perceived social benefits. Moreover, the acceptance by South Koreans for most mitigation methods is significantly higher than that by people in the U.S. Lastly, the regression results indicate that South Koreans (compared to people in the U.S.) and people with a stronger collectivist orientation tend to have higher acceptance for the control measures because they have lower privacy concerns and perceive greater social benefits for the measures. These findings advance our understanding of the important role of geographic context and culture as well as people’s experiences of the mitigation measures applied to control a previous pandemic.more » « less
An official website of the United States government

