skip to main content


Title: False negative and false positive free nanopore fabrication via adaptive learning of the controlled dielectric breakdown
We investigate the current transport characteristics in the electrolyte-dielectric-electrolyte structure commonly used in the in-situ controlled breakdown (CBD) fabrication of solid-state nanopores. It is found that the stochastic breakdown process could lead to fidelity issues of false positives (an incorrect indication of a true nanopore formation) and false negatives (inability to detect initial nanopore formation). Robust and deterministic detection of initial physical breakdown to alleviate false positives and false negatives is critical for precise nanopore size control. To this end, we report a high fidelity moving Z-Score method based CBD fabrication of solid-state nanopore. We demonstrate 100% success rate of realizing the initial nanopore conductance of 3±1 nS (corresponds to the size of 1.7±0.6 nm) regardless of the dielectric membrane characteristics. Our study also elucidates the Joule heating is the dominant mechanism for electric field-based nanopore enlargement. Single DNA molecule sensing using nanopores fabricated by this method was successfully demonstrated. We anticipate the moving Z-Score based CBD method could enable broader access to the solid state nanopore-based single molecule analysis.  more » « less
Award ID(s):
1710831
NSF-PAR ID:
10095722
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transducer 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recently, we developed a fabrication method—chemically‐tuned controlled dielectric breakdown (CT‐CDB)—that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid‐state nanopores (SSNs). However, the noise characteristics of CT‐CDB nanopores are largely unexplored. In this work, we investigated the 1/fnoise of CT‐CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs) is ∼3 order magnitude greater. Theαsof CT‐CDB nanopores was ∼5 orders of magnitude greater than theirαb, which suggests that the surface contribution plays a dominant role in 1/fnoise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/fnoise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/fnoise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7–8 range to be optimal for DNA sensing with CT‐CDB nanopores.

     
    more » « less
  2. In developing solid-state nanopore sensors for single molecule detection, comprehensive evaluation of the nanopore quality is important. Existing studies typically rely on comparing the noise root mean square or power spectrum density values. Nanopores exhibiting lower noise values are generally considered superior. This evaluation is valid when the single molecule signal remains consistent. However, the signal can vary, as it is strongly related to the solid-state nanopore size, which is hard to control during fabrication consistently. This work emphasized the need to report the baseline current for evaluating solid-state nanopore sensors. The baseline current offers insight into several experimental conditions, particularly the nanopore size. Our experiments show that a nanopore sensor with more noise is not necessarily worse when considering the signal-to-noise ratio (SNR), particularly when the pore size is smaller. Our findings suggest that relying only on noise comparisons can lead to inaccurate evaluations of solid-state nanopore sensors, considering the inherent variability in fabrication and testing setups among labs and measurements. We propose that future studies should include reporting baseline current and sensing conditions. Additionally, using SNR as a primary evaluation tool for nanopore sensors could provide a more comprehensive understanding of their performance.

     
    more » « less
  3. Abstract While the electrical models of the membrane-based solid-state nanopores have been well established, silicon-based pyramidal nanopores cannot apply these models due to two distinctive features. One is its 35.3° half cone angle, which brings additional resistance to the moving ions inside the nanopore. The other is its rectangular entrance, which makes calculating the access conductance challenging. Here, we proposed and validated an effective transport model (ETM) for silicon-based pyramidal nanopores by introducing effective conductivity. The impact of half cone angle can be described equivalently using a reduced diffusion coefficient (effective diffusion coefficient). Because the decrease of diffusion coefficient results in a smaller conductivity, effective conductivity is used for the calculation of bulk conductance in ETM. In the classical model, intrinsic conductivity is used. We used the top-down fabrication method for generating the pyramidal silicon nanopores to test the proposed model. Compared with the large error (≥25% in most cases) when using the classical model, the error of ETM in predicting conductance is less than 15%. We also found that the ETM is applicable when the ratio of excess ion concentration and bulk ion concentration is smaller than 0.2. At last, it is proved that ETM can estimate the tip size of pyramidal silicon nanopore. We believe the ETM would provide an improved method for evaluating the pyramidal silicon nanopores. 
    more » « less
  4. Abstract

    Nanoscale preconfinement of DNA is shown to reduce the variation of passage times through solid‐state nanopores. Preconfinement is previously achieved by forming a femtoliter‐sized cavity capped with a highly porous layer of nanoporous silicon nitride (NPN). This cavity is formed by sealing a NPN nanofilter membrane against a substrate chip using water vapor delamination. Ultimately, this method of fabrication cannot keep a consistent spacing between the filter and solid‐state nanopore due to thermal fluctuations and wrinkles in the membrane, nor can it be fabricated on thousands of individual devices reliably. To overcome these issues, a method is presented to fabricate the femtoliter cavity monolithically, using a selective xenon difluoride (XeF2) etch to hollow out a polysilicon (poly‐Si) spacer sandwiched between silicon nitride (SiNx) layers. These monolithically fabricated cavities behave identically to their counterparts formed by vapor delamination, exhibiting similar translocation passage time variation reduction and folding suppression of DNA without requiring extensive manual assembly. The ability to form nanocavity sensors with nanometer‐scale precision and to reliably manufacture them at scale using batch wafer processing techniques will find numerous applications, including motion control of polymers for single‐molecule detection applications, filtering of dirty samples prior to nanopore detection, and simple fabrication of single‐molecule nanobioreactors.

     
    more » « less
  5. Abstract

    Short‐term precipitation forecasts are critical to regional water management, particularly in the Western U.S. where atmospheric rivers can be predicted reliably days in advance. However, spatial error in these forecasts may reduce their utility when the costs of false positives and negatives differ greatly. Here we investigate whether deep learning methods can leverage spatial patterns in precipitation forecasts to (a) improve the skill of predicting the occurrence of precipitation events at lead times from 1 to 14 days, and (b) balance the tradeoff between the rate of false negatives and false positives by modifying the discrimination threshold of the classifiers. This approach is demonstrated for the Sacramento River Basin, California, using the Global Ensemble Forecast System (GEFS) v2 precipitation fields as input to convolutional neural network (CNN) and multi‐layer perceptron models. Results show that the deep learning models do not significantly improve the overall skill (F1 score) relative to the ensemble mean GEFS forecast with bias‐corrected threshold. However, additional analysis of the CNN models suggests they often correct missed predictions from GEFS by compensating for spatial error at longer lead times. Additionally, the deep learning models provide the ability to adjust the rate of false positives and negatives based on the ratio of costs. Finally, analysis of the network activations (saliency) indicates spatial patterns consistent with physical understanding of atmospheric river events in this region, lending additional confidence in the ability of the method to support water management applications.

     
    more » « less