To develop active materials that can efficiently respond to external stimuli with designed mechanical motions is a major obstacle that have hindered the realization nanomachines and nanorobots. Here, we present our finding and investigation of an original working mechanism that allows multifold reconfigurable motion control in both rotation and alignment of semiconductor micromotors in an AC electric field with simple visible-light stimulation. In our previous work, we reported the instantly switchable electrorotation owing to the optically tunable imaginary part of electric polarization of a semiconductor nanowire in aqueous suspension[1]. Here we provide further experimental confirmation along with numerical simulation. Moreover, according to the Kramers-Kronig relation, the real part of the electric polarization should also be optically tunable, which can be experimentally verified with tests of electro-alignment of a nanowire. Here, we report our experimental study of light effect on electro-alignment along with theoretical simulation to complete the investigation of opto-tunable electric polarization of a semiconductor nanowire. Finally, we demonstrate a micromotor with periodically oscillating rotation with simple asymmetric exposure to a light pattern. This research could inspire development of a new class of micro/nanomachines with agile and spatially defined maneuverability.
more »
« less
Visible light–gated reconfigurable rotary actuation of electric nanomotors
Highly efficient and widely applicable working mechanisms that allow nanomaterials and devices to respond to external stimuli with controlled mechanical motions could make far-reaching impact to reconfigurable, adaptive, and robotic nanodevices. We report an innovative mechanism that allows multifold reconfiguration of mechanical rotation of semiconductor nanoentities in electric ( E ) fields by visible light stimulation. When illuminated by light in the visible-to-infrared regime, the rotation speed of semiconductor Si nanowires in E -fields can instantly increase, decrease, and even reverse the orientation, depending on the intensity of the applied light and the AC E -field frequency. This multifold rotational reconfiguration is highly efficient, instant, and facile. Switching between different modes can be simply controlled by the light intensity at an AC frequency. We carry out experiments, theoretical analysis, and simulations to understand the underlying principle, which can be attributed to the optically tunable polarization of Si nanowires in an aqueous suspension and an external E -field. Finally, leveraging this newly discovered effect, we successfully differentiate semiconductor and metallic nanoentities in a noncontact and nondestructive manner. This research could inspire a new class of reconfigurable nanoelectromechanical and nanorobotic devices for optical sensing, communication, molecule release, detection, nanoparticle separation, and microfluidic automation.
more »
« less
- PAR ID:
- 10095752
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 4
- Issue:
- 9
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaau0981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To develop active nanomaterials that can instantly respond to external stimuli with designed mechanical motions is an important step towards the realization of nanorobots. Herein, we present our finding of a versatile working mechanism that allows instantaneous change of alignment direction and speed of semiconductor nanowires in an external electric field with simple visible-light exposure. The light induced alignment switch can be cycled over hundreds of times and programmed to express words in Morse code. With theoretical analysis and simulation, the working principle can be attributed to the optically tuned real-part (in-phase) electrical polarization of a semiconductor nanowire in aqueous suspension. The manipulation principle is exploited to create a new type of microscale stepper motor that can readily switch between in-phase and out-phase modes, and agilely operate independent of neighboring motors with patterned light. This work could inspire the development of new types of micro/nanomachines with individual and reconfigurable maneuverability for many applications.more » « less
-
Doped semiconductor nanowires are emerging as next-generation electronic colloidal materials, and the efficient manipulation of such nanostructures is crucial for technological applications. In fluid suspension, pn nanowires (pn NWs), unlike homogeneous nanowires, have a permanent dipole, and thus, experience a torque under an external DC field that orients the nanowire with its n-type end in the direction of the field. Here, we quantitatively measure the permanent dipoles of various Si nanowire pn diodes and investigate their origin. By comparing the dipoles of pn NWs of different lengths and radii, we show that the permanent dipole originates from non-uniform surface-charge distributions, rather than the internal charges at the p–n junction as was previously proposed. This understanding of the mechanism for pn NWs orientation has relevance to the manipulation, assembly, characterization, and separation of nanowire electronics by electric fields.more » « less
-
null (Ed.)Pure liquids in thermodynamic equilibrium are structurally homogeneous. In liquid crystals, flow and light pulses are used to create reconfigurable domains with polar order. Moreover, through careful engineering of concerted microfluidic flows and localized optothermal fields, it is possible to achieve complete control over the nucleation, growth, and shape of such domains. Experiments, theory, and simulations indicate that the resulting structures can be stabilized indefinitely, provided the liquids are maintained in a controlled nonequilibrium state. The resulting sculpted liquids could find applications in microfluidic devices for selective encapsulation of solutes and particles into optically active compartments that interact with external stimuli.more » « less
-
Abstract Metal‐semiconductor heterostructures providing geometrically reproducible and abrupt Schottky nanojunctions are highly anticipated for the realization of emerging electronic technologies. This specifically holds for reconfigurable field‐effect transistors, capable of dynamically altering the operation mode between n‐ or p‐type even during run‐time. Targeting the enhancement of fabrication reproducibility and electrical balancing between operation modes, here a nanoscale Al‐Si‐Al nanowire heterostructure with single elementary, monocrystalline Al leads and sharp Schottky junctions is implemented. Utilizing a three top‐gate architecture, reconfiguration on transistor level is enabled. Having devised symmetric on‐currents as well as threshold voltages for n‐ and p‐type operation as a necessary requirement to exploit complementary reconfigurable circuits, selected implementations of logic gates such as inverters and combinational wired‐AND gates are reported. In this respect, exploiting the advantages of the proposed multi‐gate transistor architecture and offering additional logical inputs, the device functionality can be expanded by transforming a single transistor into a logic gate. Importantly, the demonstrated Al‐Si material system and thereof shown logic gates show high compatibility with state‐of‐the‐art complementary metal‐oxide semiconductor technology. Additionally, exploiting reconfiguration at the device level, this platform may pave the way for future adaptive computing systems with low‐power consumption and reduced footprint, enabling novel circuit paradigms.more » « less
An official website of the United States government

