Advances in integrated sensors and low-power electronics have led to an increase in the use of wearable devices for health and activity monitoring applications. These devices have severe limitations on weight, form-factor, and battery size since they have to be comfortable to wear. Therefore, they must minimize the total platform energy consumption while satisfying functionality (e.g., accuracy) and performance requirements. Optimizing the platform-level energy efficiency requires considering both the sensor and processing subsystems. To this end, this paper presents a sensor-classifier co-optimization technique with human activity recognition as a driver application. The proposed technique dynamically powers down the accelerometer sensors and controls their sampling rate as a function of the user activity. It leads to a 49% reduction in total platform energy consumption with less than 1% decrease in activity recognition accuracy.
more »
« less
Adaptive Activity Monitoring with Uncertainty Quantification in Switching Gaussian Process Models
Emerging wearable sensors have enabled the unprecedented ability to continuously monitor human activities for healthcare purposes. However, with so many ambient sensors collecting different measurements, it becomes important not only to maintain good monitoring accuracy, but also low power consumption to ensure sustainable monitoring. This power-efficient sensing scheme can be achieved by deciding which group of sensors to use at a given time, requiring an accurate characterization of the trade-off between sensor energy usage and the uncertainty in ignoring certain sensor signals while monitoring. To address this challenge in the context of activity monitoring, we have designed an adaptive activity monitoring framework. We first propose a switching Gaussian process to model the observed sensor signals emitting from the underlying activity states. To efficiently compute the Gaussian process model likelihood and quantify the context prediction uncertainty, we propose a block circulant embedding technique and use Fast Fourier Transforms (FFT) for inference. By computing the Bayesian loss function tailored to switching Gaussian processes, an adaptive monitoring procedure is developed to select features from available sensors that optimize the trade-off between sensor power consumption and the prediction performance quantified by state prediction entropy. We demonstrate the effectiveness of our framework on the popular benchmark of UCI Human Activity Recognition using Smartphones.
more »
« less
- Award ID(s):
- 1718513
- PAR ID:
- 10096011
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 89
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 266-275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study a wireless ad-hoc sensor network (WASN) where N sensors gather data from the surrounding environment and transmit their sensed information to M fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is formulated as an optimization problem to make a trade-off between the sensing uncertainty and energy consumption of the network. Our primary goal is to find an optimal deployment of sensors and FCs that minimizes a Lagrangian combination of sensing uncertainty and energy consumption. To support arbitrary routing protocols in WASNs, the routing dependent necessary conditions for the optimal deployment are explored. Based on these necessary conditions, we propose a routing-aware Lloyd-like algorithm to optimize node deployment. Simulation results show that our proposed algorithm outperforms the existing deployment algorithms, on average.more » « less
-
CIM: A Novel Clustering-based Energy-Efficient Data Imputation Method for Human Activity RecognitionHuman activity recognition (HAR) is an important component in a number of health applications, including rehabilitation, Parkinson’s disease, daily activity monitoring, and fitness monitoring. State-of-the-art HAR approaches use multiple sensors on the body to accurately identify activities at runtime. These approaches typically assume that data from all sensors are available for runtime activity recognition. However, data from one or more sensors may be unavailable due to malfunction, energy constraints, or communication challenges between the sensors. Missing data can lead to significant degradation in the accuracy, thus affecting quality of service to users. A common approach for handling missing data is to train classifiers or sensor data recovery algorithms for each combination of missing sensors. However, this results in significant memory and energy overhead on resource-constrained wearable devices. In strong contrast to prior approaches, this paper presents a clustering-based approach (CIM) to impute missing data at runtime. We first define a set of possible clusters and representative data patterns for each sensor in HAR. Then, we create and store a mapping between clusters across sensors. At runtime, when data from a sensor are missing, we utilize the stored mapping table to obtain most likely cluster for the missing sensor. The representative window for the identified cluster is then used as imputation to perform activity classification. We also provide a method to obtain imputation-aware activity prediction sets to handle uncertainty in data when using imputation. Experiments on three HAR datasets show that CIM achieves accuracy within 10% of a baseline without missing data for one missing sensor when providing single activity labels. The accuracy gap drops to less than 1% with imputation-aware classification. Measurements on a low-power processor show that CIM achieves close to 100% energy savings compared to state-of-the-art generative approaches.more » « less
-
Abstract Environmental sensors are crucial for monitoring weather conditions and the impacts of climate change. However, it is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica. Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty. Gaussian process (GP) models are widely used for this purpose, but they struggle with capturing complex non-stationary behaviour and scaling to large datasets. This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues. A ConvGNP uses neural networks to parameterise a joint Gaussian distribution at arbitrary target locations, enabling flexibility and scalability. Using simulated surface air temperature anomaly over Antarctica as training data, the ConvGNP learns spatial and seasonal non-stationarities, outperforming a non-stationary GP baseline. In a simulated sensor placement experiment, the ConvGNP better predicts the performance boost obtained from new observations than GP baselines, leading to more informative sensor placements. We contrast our approach with physics-based sensor placement methods and propose future steps towards an operational sensor placement recommendation system. Our work could help to realise environmental digital twins that actively direct measurement sampling to improve the digital representation of reality.more » « less
-
Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent research on HAR focuses on using smartphones due to their widespread use. However, this leads to inconvenient use, limited choice of sensors and inefficient use of resources, since smartphones are not designed for HAR. This paper presents the first HAR framework that can perform both online training and inference. The proposed framework starts with a novel technique that generates features using the fast Fourier and discrete wavelet transforms of a textile-based stretch sensor and accelerometer data. Using these features, we design a neural network classifier which is trained online using the policy gradient algorithm. Experiments on a low power IoT device (TI-CC2650 MCU) with nine users show 97.7% accuracy in identifying six activities and their transitions with less than 12.5 mW power consumption.more » « less
An official website of the United States government

