skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microfluidic fabrication of microparticles for biomedical applications
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.  more » « less
Award ID(s):
1708729 1420570
PAR ID:
10096188
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Society Reviews
Volume:
47
Issue:
15
ISSN:
0306-0012
Page Range / eLocation ID:
5646 to 5683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology. 
    more » « less
  2. Large-scale and controllable fabrication is an indispensable step for the industrialization and commercialization of halide perovskite nanocrystals, which are new-generation semiconductor materials for optoelectronic applications. Microfluidics, which provides continuous and precise synthesis, has been considered as a promising technique to fulfill this aspect. The research studies over the past decades have witnessed the advancement of microfluidics as a powerful tool in the fabrication of halide perovskite nanocrystals. In this Perspective, the state-of-the-art research based on microfluidics is introduced initially, including the synthesis of functional structures and materials, devices, as well as the interdisciplinary interactions between microfluidics and artificial intelligence and machine learning, etc. We then detail the issues and challenges in hindering progress in the above areas. Finally, we provide future directions and trends for the technology to achieve its full potential. This Perspective is expected to benefit the collective efforts between the field of nanomaterials and microfluidics in advanced manufacturing. 
    more » « less
  3. Patterned deposition and 3D fabrication techniques have enabled the use of hydrogels for a number of applications including microfluidics, sensors, separations, and tissue engineering in which form fits function. Devices such as reconfigurable microvalves or implantable tissues have been created using lithography or casting techniques. Here, we present a novel open-microfluidic patterning method that utilizes surface tension forces to form hydrogel layers on top of each other, into a patterned 3D structure. We use a patterning device to form a temporary open microfluidic channel on an existing gel layer, allowing the controlled flow of unpolymerized gel in device-regions. After layer gelation and device removal, the process can be repeated iteratively to create multi-layered 3D structures. The use of open-microfluidic and surface tension-based methods to define the shape of each individual layer enables patterning to be performed with a simple pipette and with minimal dead-volume. Our method is compatible with unmodified (native) biological hydrogels, and other non-biological materials with precursor fluid properties compatible with capillary flow. With our open-microfluidic layer-by-layer fabrication method, we demonstrate the capability to build agarose, type I collagen, and polymer–peptide 3D structures featuring asymmetric designs, multiple components, overhanging features, and cell-laden regions. 
    more » « less
  4. Gas dynamic virtual nozzles (GDVNs) produce microscopic flow-focused liquid jets and droplets and play an important role at X-ray free-electron laser (XFEL) facilities where they are used to steer a stream of hydrated biomolecules into an X-ray focus during diffraction measurements. Highly stable and reproducible microjet and microdroplets are desired, as are flexible fabrication methods that enable integrated mixing microfluidics, droplet triggering mechanisms, laser illumination, and other customized features. In this study, we develop the use of high-resolution 3D nano-printing for the production of monolithic, asymmetric GDVN designs that are difficult to fabricate by other means. We also develop a dual-pulsed nanosecond image acquisition and analysis platform for the characterization of GDVN performance, including jet speed, length, diameter, and directionality, among others. We show that printed GDVNs can form microjets with very high degree of reproducibility, down to sub-micron diameters, and with water jet speeds beyond 170 m/s. 
    more » « less
  5. Along with the increasing interest in MoS 2 as a promising electronic material, there is also an increasing demand for nanofabrication technologies that are compatible with this material and other relevant layered materials. In addition, the development of scalable nanofabrication approaches capable of directly producing MoS 2 device arrays is an imperative task to speed up the design and commercialize various functional MoS 2 -based devices. The desired fabrication methods need to meet two critical requirements. First, they should minimize the involvement of resist-based lithography and plasma etching processes, which introduce unremovable contaminations to MoS 2 structures. Second, they should be able to produce MoS 2 structures with in-plane or out-of-plane edges in a controlled way, which is key to increase the usability of MoS 2 for various device applications. Here, we introduce an inkjet-defined site-selective (IDSS) method that meets these requirements. IDSS includes two main steps: (i) inkjet printing of microscale liquid droplets that define the designated sites for MoS 2 growth, and (ii) site-selective growth of MoS 2 at droplet-defined sites. Moreover, IDSS is capable of generating MoS 2 with different structures. Specifically, an IDSS process using deionized (DI) water droplets mainly produces in-plane MoS 2 features, whereas the processes using graphene ink droplets mainly produce out-of-plane MoS 2 features rich in exposed edges. Using out-of-plane MoS 2 structures, we have demonstrated the fabrication of miniaturized on-chip lithium ion batteries, which exhibit reversible lithiation/delithiation capacity. This IDSS method could be further expanded as a scalable and reliable nanomanufacturing method for generating miniaturized on-chip energy storage devices. 
    more » « less