skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: EMIC wave events during the four GEM QARBM challenge intervals
This paper presents observations of electromagnetic ion cyclotron (EMIC) waves from multiple data sources during the four Geospace Environment Modeling challenge events in 2013 selected by the Geospace Environment Modeling Quantitative Assessment of Radiation Belt Modeling focus group: 17 and 18 March (stormtime enhancement), 31 May to 2 June (stormtime dropout), 19 and 20 September (nonstorm enhancement), and 23–25 September (nonstorm dropout). Observations include EMIC wave data from the Van Allen Probes, Geostationary Operational Environmental Satellite, and Time History of Events and Macroscale Interactions during Substorms spacecraft in the near-equatorial magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low-altitude Polar Operational Environmental Satellite spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near-equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the Relativistic Electron-Proton Telescope and Magnetic Electron Ion Spectrometer instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~4.0. In three other cases, identifiable smaller and more short-lived dropouts appeared, and in five other cases, these waves evidently had little or no effect.  more » « less
Award ID(s):
1651263 1341493
NSF-PAR ID:
10096492
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Journal of geophysical research. Space physics
Volume:
123
ISSN:
2169-9380
Page Range / eLocation ID:
7276-7282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective. 
    more » « less
  2. Abstract

    Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC‐driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 Lshells) with similar patterns between satellites.

     
    more » « less
  3. Abstract

    We report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves nearL = 5.5–6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground‐based magnetometer near the spacecraft geomagnetic footprint over a more extensive temporal range. Phase space density profiles, calculated from directional differential electron flux data from Van Allen Probes, show that there was a significant energy‐dependent relativistic electron dropout over a limitedL‐shell range during and after the EMIC wave activity. In addition, the NOAA spacecraft observed relativistic electron precipitation associated with the EMIC waves near the footprint of the Van Allen Probes spacecraft. The observations suggest EMIC wave‐induced relativistic electron loss in the radiation belt.

     
    more » « less
  4. Abstract

    We analyze the drivers, distribution, and properties of the relativistic electron precipitation (REP) detected near midnight by the Polar Orbiting Environmental Satellites (POES) and Meteorological Operational (MetOp) satellites, critical for understanding radiation belt losses and nightside atmospheric energy input. REP is either driven by wave‐particle interactions (isolated precipitation within the outer radiation belt), or current sheet scattering (CSS; precipitation with energy dispersion), or a combination of the two. We evaluate the L‐MLT distribution for the identified REP events in which only one process evidently drove the precipitation (∼10% of the REP near midnight). We show that the two mechanisms coexist and drive precipitation in a broadL‐shell range (4–7). However, wave‐driven REP was also observed atL < 4, whereas CSS‐driven REP was also detected atL > 7. Moreover, we estimate the magnetotail stretching during each REP event using the magnetic field observations from the Geostationary Operational Environmental Satellite (GOES). Both wave‐particle interactions and CSS drive REP in association with a stretched magnetotail, although CSS‐driven REP potentially shows more pronounced stretching. Wave‐driven REP events are localized inLshell and often occur on spatial scales of <0.3 L. Using either proton precipitation (observed by POES/MetOp during wave‐driven REP) as a proxy for electromagnetic ion cyclotron (EMIC) wave activity or wave observations (from GOES and the Van Allen Probes) at the conjugate event location, we find that ∼73% wave‐driven REP events are associated with EMIC waves.

     
    more » « less
  5. Abstract

    We evaluate the location, extent, and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multisatellite observations from near‐equatorial and Low‐Earth‐Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD‐II) CubeSats, in conjunction either with typical EMIC‐driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or with in situ EMIC wave observations from Van Allen Probes. The multievent analysis shows that electron precipitation occurred in a broad region near dusk (16–23 MLT), mostly confined to 3.5–7.5 L‐shells. Each precipitation event occurred on localized radial scales, on average ∼0.3 L. Most importantly, FIREBIRD‐II recorded electron precipitation from ∼200 to 300 keV to the expected ∼MeV energies for most cases, suggesting that EMIC waves can efficiently scatter a wide energy range of electrons.

     
    more » « less