skip to main content

Title: [La(η x -B x )La] ( x = 7–9): a new class of inverse sandwich complexes
Despite the importance of bulk lanthanide borides, nanoclusters of lanthanide and boron have rarely been investigated. Here we show that lanthanide–boron binary clusters, La 2 B x − , can form a new class of inverse-sandwich complexes, [Ln(η x -B x )Ln] − ( x = 7–9). Joint experimental and theoretical studies reveal that the monocyclic B x rings in the inverse sandwiches display similar bonding, consisting of three delocalized σ and three delocalized π bonds. Such monocyclic boron rings do not exist for bare boron clusters, but they are stabilized by the sandwiching lanthanide atoms. An electron counting rule is proposed to predict the sizes of the B x ring that can form stable inverse sandwiches. A unique (d-p)δ bond is found to play important roles in the stability of all three inverse-sandwich complexes.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Chemical Science
Page Range or eLocation-ID:
2534 to 2542
Sponsoring Org:
National Science Foundation
More Like this
  1. Because of their interesting structures and bonding and potentials as motifs for new nanomaterials, size-selected boron clusters have received tremendous interest in recent years. In particular, boron cluster anions (B n − ) have allowed systematic joint photoelectron spectroscopy and theoretical studies, revealing predominantly two-dimensional structures. The discovery of the planar B 36 cluster with a central hexagonal vacancy provided the first experimental evidence of the viability of 2D borons, giving rise to the concept of borophene. The finding of the B 40 cage cluster unveiled the existence of fullerene-like boron clusters (borospherenes). Metal-doping can significantly extend the structural and bonding repertoire of boron clusters. Main-group metals interact with boron through s/p orbitals, resulting in either half-sandwich-type structures or substitutional structures. Transition metals are more versatile in bonding with boron, forming a variety of structures including half-sandwich structures, metal-centered boron rings, and metal-centered boron drums. Transition metal atoms have also been found to be able to be doped into the plane of 2D boron clusters, suggesting the possibility of metalloborophenes. Early studies of di-metal-doped boron clusters focused on gold, revealing ladder-like boron structures with terminal gold atoms. Recent observations of highly symmetric Ta 2 B 6 − and Ln 2more »B n − ( n = 7–9) clusters have established a family of inverse sandwich structures with monocyclic boron rings stabilized by two metal atoms. The study of size-selected boron and doped-boron clusters is a burgeoning field of research. Further investigations will continue to reveal more interesting structures and novel chemical bonding, paving the foundation for new boron-based chemical compounds and nanomaterials.« less
  2. Abstract

    Lanthanide (Ln) elements are generally found in the oxidation state +II or +III, and a few examples of +IV and +V compounds have also been reported. In contrast, monovalent Ln(+I) complexes remain scarce. Here we combine photoelectron spectroscopy and theoretical calculations to study Ln-doped octa-boron clusters (LnB8, Ln = La, Pr, Tb, Tm, Yb) with the rare +I oxidation state. The global minimum of the LnB8species changes fromCstoC7vsymmetry accompanied by an oxidation-state change from +III to +I from the early to late lanthanides. All theC7v-LnB8clusters can be viewed as a monovalent Ln(I) coordinated by a η8-B82−doubly aromatic ligand. The B73−, B82−, and B9series of aromatic boron clusters are analogous to the classical aromatic hydrocarbon molecules, C5H5, C6H6, and C7H7+, respectively, with similar trends of size and charge state and they are named collectively as “borozenes”. Lanthanides with variable oxidation states and magnetic properties may be formed with different borozenes.

  3. Boron displays many unusual structural and bonding properties due to its electron deficiency. Here we show that a boron atom in a boron monoxide cluster (B 9 O − ) exhibits transition-metal-like properties. Temperature-dependent photoelectron spectroscopy provided evidence of the existence of two isomers for B 9 O − : the main isomer has an adiabatic detachment energy (ADE) of 4.19 eV and a higher energy isomer with an ADE of 3.59 eV. The global minimum of B 9 O − is found surprisingly to be an umbrella-like structure ( C 6v , 1 A 1 ) and its simulated spectrum agrees well with that of the main isomer observed. A low-lying isomer ( C s , 1 A′) consisting of a BO unit bonded to a disk-like B 8 cluster agrees well with the 3.59 eV ADE species. The unexpected umbrella-like global minimum of B 9 O − can be viewed as a central boron atom coordinated by a η 7 -B 7 ligand on one side and a BO ligand on the other side, [(η 7 -B 7 )-B-BO] − . The central B atom is found to share its valence electrons with the B 7 unit tomore »fulfill double aromaticity, similar to that in half-sandwich [(η 7 -B 7 )-Zn-CO] − or [(η 7 -B 7 )-Fe(CO) 3 ] − transition-metal complexes. The ability of boron to form a half-sandwich complex with an aromatic ligand, a prototypical property of transition metals, brings out new metallomimetic properties of boron.« less
  4. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′more »3 Ln compounds.« less
  5. The investigation of the coordination chemistry of rare-earth metal complexes with cyanide ligands led to the isolation and crystallographic characterization of the Ln III cyanotriphenylborate complexes dichlorido(cyanotriphenylborato-κ N )tetrakis(tetrahydrofuran-κ O )lanthanide(III), [ Ln Cl 2 (C 19 H 15 BN)(C 4 H 8 O) 4 ] [lanthanide ( Ln ) = dysprosium (Dy) and yttrium Y)] from reactions of LnCl 3 , KCN, and NaBPh 4 . Attempts to independently synthesize the tetraethylammonium salt of (NCBPh 3 ) − from BPh 3 and [NEt 4 ][CN] in THF yielded crystals of the phenyl-substituted cyclic borate, tetraethylazanium 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide, C 8 H 20 N + ·C 24 H 20 B 3 O 3 − or [NEt 4 ][B 3 (μ-O) 3 (C 6 H 5 ) 4 ]. The mechanochemical reaction of BPh 3 and [NEt 4 ][CN] without solvent produced crystals of tetraethylazanium cyanodiphenyl-λ 4 -boranyl diphenylborinate, C 8 H 20 N + ·C 25 H 20 B 2 NO − or [NEt 4 ][NCBPh 2 (μ-O)BPh 2 ]. Reaction of BPh 3 and KCN in THF in the presence of 2.2.2-cryptand (crypt) led to a crystal of bis[(2.2.2-cryptand)potassium] 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide cyanomethyldiphenylborate tetrahydrofuran disolvate, 2C 18 H 36more »KN 2 O 6 + ·C 24 H 20 B 3 O 3 − ·C 14 H 13 BN − ·2C 4 H 8 O or [K(crypt)] 2 [B 3 (μ-O) 3 (C 6 H 5 ) 4 ][NCBPh 2 Me]·2THF. The [NCBPh 2 (μ-O)BPh 2 ] 1− and (NCBPh 2 Me) 1− anions have not been structurally characterized previously. The structure of 1-Y was refined as a two-component twin with occupancy factors 0.513 (1) and 0.487 (1). In 4 , one solvent molecule was disordered and included using multiple components with partial site-occupancy factors.« less