skip to main content


Title: Identifying Pre-Service Elementary Teachers Productive Knowledge Resources around Representations and Arguments in Math and Science
There have been increased calls for elementary teachers to integrate and connect knowledge across STEM disciplines. Along those lines, previous empirical research has identified known leverage points based on the disciplinary practices of representation and argumentation in math and science. Using the theoretical framework of resource theory, we analyzed data of pre-service teachers (PSTs) participation in open-ended performance assessments in math and science that asked them to utilize their subject matter knowledge and pedagogical content knowledge to address a realistic classroom challenge related to a hypothetical teaching scenario. Results show that the PSTs have a variety of productive knowledge resources related to generating and analyzing arguments and representations. We discuss the implications for elementary STEM teaching and teacher preparation.  more » « less
Award ID(s):
1712493
PAR ID:
10096687
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annual meeting program - American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Knowledge of science content and the ability to translate knowledge into effective teaching is known as teachers'content knowledge for teaching(CKT). Teachers with developed CKT are able to more effectively determine instructional and assessment activities that will deepen K‐12 students' scientific literacy. However, preservice teachers (PSTs) can have limited opportunities to develop CKT, and little is known about how to support PST CKT development in elementary science teacher preparation. In our work, we developed instructional materials (i.e., “CKT Packets”) intended to support teacher educators (TEs) in developing elementary PSTs' CKT for one content area—matter and its interactions. We facilitated a professional learning community for TEs to support their learning how to implement the materials in their courses. We report on results from a mixed‐methods study using a quasi‐experimental cohort control design with a pretest and posttest to understand differences in PSTs' CKT (N = 250) in eight TEs' science classrooms. Nesting PSTs within their TEs' courses, and controlling for PSTs' prior CKT, engagement time on the assessments, prior coursework, and TE time‐invariant effects, we found preliminary evidence that PSTs achieved greater CKT when TEs implemented more CKT Packets. Salient factors that we hypothesize influenced TEs' productive uses of CKT Packets included disruptions to courses/contexts, TEs' sources of motivation for implementing Packets, TEs' entry points for the alignment of curricular materials with existing topics and pedagogical course emphases, TEs' approaches for first‐time use of curricular materials, and TEs' experiences with the instructional routines of the Packets. We bound our interpretation of results within limitations (e.g., small sample size, quasi‐experimental design) and suggest avenues for new research. Throughout this article, we include implications for TEs, PSTs, educative curricula developers, and researchers working to improve science teaching and learning for students.

     
    more » « less
  2. Abstract. We investigated preservice teachers’ (PSTs) (N=13) experiences in a science teaching inquiry group professional learning experience on integrating computational thinking (CT) into elementary science. A subgroup of PSTs (n=6) participated alongside their mentor teachers. The others (n=7) participated independently. Our research question was: To what extent, if any, did participating in a professional learning experience on CT along with their mentor teachers appear to enhance PSTs’ learning and practice related to CT integration? We analyzed evaluation feedback, interviews, participant-developed lesson plans, surveys, and attendance data. Findings suggested that participants in both groups reacted positively to the learning experience’s content and approach, and expressed similar perceptions of their CT integration knowledge. PSTs participating with their mentor teachers felt slightly more successful in their CT integration efforts, and perceived CT integration as more feasible in their teaching contexts. However, differences between the groups were minimal. We also noted possible of influence of PSTs’ perceptions of the districts in which they were teaching. Our findings underscore the importance of PSTs’ perceptions of their teaching contexts when bringing a new innovation to the classroom - namely, perceptions of their mentors and curricula as supportive of the innovation. Through this ongoing work, we seek to identify empirically-supported strategies for preparing PSTs to integrate CT into their future classrooms. 
    more » « less
  3. A major challenge for elementary STEM teacher educators is incorporating social justice considerations across the span of professional program coursework. Recognizing that standards and policy documents are pressing for diversity and inclusion in STEM education, there is a growing need to support preservice teachers’ learning about critical theories and how to develop an equitable vision of teaching. This paper describes ongoing research on our University’s elementary STEM teacher education program. We focus our discussion on instrument development and the methods we used for eliciting preservice teachers’ understandings of equity and diversity issues related to teaching STEM content. We designed a number of math, science, and technology scenarios in tandem, as means of building coherence across disciplinary boundaries; this report focuses on math teaching and learning. 
    more » « less
  4. For reasoning and proof to become a reality in mathematics classrooms, it is important to prepare teachers who have knowledge and skills to integrate reasoning and proving in their teaching. Aiming to enhance prospective secondary teachers’ (PSTs) content and pedagogical knowledge related to proof, we designed and studied a capstone course Mathematical Reasoning and Proving for Secondary Teachers. This paper describes the structure of the course and illustrates how PSTs’ interacted with its different components. The PSTs first strengthened their content knowledge, then developed and taught in local schools a lesson incorporating proof components. Initial data analyses show gains in PSTs’ knowledge for teaching proof and dispositions towards proving, following their participation in the course. 
    more » « less
  5. In order to create professional development experiences, curriculum materials, and policies that support elementary school teachers to embed computational thinking (CT) in their teaching, researchers and teacher educators must under- stand ways teachers see CT as connecting to their classroom practices. Taking the viewpoint that teachers’ initial ideas about CT can serve as useful resources on which to build ed- ucational experiences, we interviewed 12 elementary school teachers to probe their understanding of six components of CT (abstraction, algorithmic thinking, automation, debug- ging, decomposition, and generalization) and how those com- ponents relate to their math and science teaching. Results suggested that teachers saw stronger connections between CT and their mathematics instruction than between CT and their science instruction. We also found that teachers draw upon their existing knowledge of CT-related terminology to make connections to their math and science instruction that could be leveraged in professional development. Teachers were, however, concerned about bringing CT into teaching due to limited class time and the difficulties of addressing high level CT in developmentally appropriate ways. We discuss these results and their implications future research and the design of professional development, sharing examples of how we used teachers’ initial ideas as the foundation of a workshop introducing them to computational thinking. 
    more » « less