skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classical theory of laser-assisted spontaneous bremsstrahlung
We study the process of laser-assisted spontaneous electron bremsstrahlung by running classical trajectories in a combined Coulomb and laser (ac) fields. Due to chaotic scattering in the combined Coulomb and ac fields, the radiation probability as a function of the impact parameter and the constant phase of the laser field exhibits fractal structures. However, these structures are smeared out when the cross section is integrated over the impact parameter and averaged over the phase. We analyze the role of different types of orbits, including the trapped orbits, and the dependence of the radiation probability on the impact parameter and the initial phase of the ac field.We show that, at low incident electron kinetic energy, the Coulomb focusing leads to a substantial extension of the range of impact parameters contributing to the bremsstrahlung cross section and results in a substantial increase (by one to two orders of magnitude) of the cross section as compared with the pure Coulomb case. As examples, we discuss the case of relatively high ponderomotive energy Ep when we obtain an efficient production of photons with frequencies up to 2Ep, and the case of low Ep when only infrared photons are produced. Overall accuracy of the classical approach is estimated to be very good, although it does not describe resonant processes studied previously by quantum-mechanical methods.  more » « less
Award ID(s):
1803744
PAR ID:
10096693
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical review, A
ISSN:
2469-9934
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the process of laser-assisted radiative recombination of an electron with a proton in a cold hydrogen plasma employing the semiclassical Kramers’ approach which involves calculation of classical trajectories in combined laser and Coulomb fields and the use of the correspondence principle. Due to the Coulomb focusing effect, recombination is the most effective when the initial electron momentum is parallel to the laser polarization. Orders of magnitude enhancement of the cross section, as compared to the laser-free case, is observed in this case. With increasing angle between the electron momentum and polarization, the recombination cross section drops. However, even after averaging over Maxwellian velocity distribution we obtain a substantial enhancement of the recombination rate constant, as compared to the zero-field case. For the field intensities in the range 30–350 MW cm−2, the enhancement occurs in the region of the radiation wavelength from 5 to 20µm and for the plasma temperature from 20 to 300 K. 
    more » « less
  2. The interaction of high-intensity lasers with plasma is predicted to produce extreme quasi-static magnetic fields with magnitudes approaching Megatesla levels. In relativistically transparent plasmas, these fields can enhance direct laser acceleration and allow efficient gamma-ray emission by accelerated electrons. However, due to the so-called magnetic suppression effect, the magnetic field can also affect radiating electron trajectories and, thus, reduce the emission probability of the bremsstrahlung. This is the first study to examine the bremsstrahlung suppression mechanism in the context of high-intensity laser–plasma interactions. Our paper describes a new module that integrates the suppression effect into the standard bremsstrahlung module of the EPOCH particle-in-cell code by considering the impact of magnetic fields and extending the analysis to electric fields. We also investigate this suppressing mechanism's effect on the emitting electron's dynamics. Our findings show that this mechanism not only suppresses low-energy emissions but also has an impact on the dynamics of the radiating electrons. 
    more » « less
  3. Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3D hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 1019 W/cm2) on a 100-μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography. 
    more » « less
  4. Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus. 
    more » « less
  5. The low-electron flux variability (increase/decrease) in the Earth’s radiation belts could cause low-energy Electron Precipitation (EP) to the atmosphere over auroral and South American Magnetic Anomaly (SAMA) regions. This EP into the atmosphere can cause an extra upper atmosphere’s ionization, forming the auroral-type sporadic E layers (Esa) over these regions. The dynamic mechanisms responsible for developing this Esa layer over the auroral region have been established in the literature since the 1960s. In contrast, there are several open questions over the SAMA region, principally due to the absence (or contamination) of the inner radiation belt and EP parameter measurements over this region. Generally, the Esa layer is detected under the influence of geomagnetic storms during the recovery phase, associated with solar wind structures, in which the time duration over the auroral region is considerably greater than the time duration over the SAMA region. The inner radiation belt’s dynamic is investigated during a High-speed Solar wind Stream (September 24-25, 2017), and the hiss wave-particle interactions are the main dynamic mechanism able to trigger the Esa layer’s generation outside the auroral oval. This result is compared with the dynamic mechanisms that can cause particle precipitation in the auroral region, showing that each region presents different physical mechanisms. Additionally, the difference between the time duration of the hiss wave activities and the Esa layers is discussed, highlighting other ingredients mandatory to generate the Esa layer in the SAMA region. 
    more » « less