skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Analog QAM Demodulator for Millimeter-Wave Communications
Recent interest in wide-band multi-giga-bit-per second wireless communications over mm-wave bands has created both new opportunities and design challenges. The realization of such technologies including multi-giga-samples-per second data conversion and digital signal processing systems is extremely challenging. In this brief, we propose a fully analog QAM demodulator as a step towards eliminating the power hungry and ultra-high speed digital components. The proposed low-complexity, low-overhead solution is shown to be robust against analog processing errors.  more » « less
Award ID(s):
1611575
PAR ID:
10096828
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE transactions on circuits and systems. II, Express briefs
ISSN:
1549-7747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spatial multiplexing, or multi-user MIMO, can improve the communication throughput by simultaneously supporting multiple spatially non-collocated data streams. Most multi-user MIMO TRXs at GHz are based on digital beamforming. However, as the data rate of each user approaches multi-Gb/s at mmWave, performing dynamic beamforming weights calculation in digital and high-speed digital-to-analog conversion faces a significant energy efficiency bottleneck for large-scale mmWave antenna arrays. Alternatively, hybrid beamforming can support a handful of concurrent data streams by combining analog beamforming with digital precoding. Although hybrid beamforming loses degrees-of-freedom compared to all-digital processing, it reduces digital computation complexity and the number of digital-to-analog conversion chains, resulting in greatly enhanced energy efficiency. 
    more » « less
  2. null (Ed.)
    Spatial linear transforms that process multiple parallel analog signals to simplify downstream signal processing find widespread use in multi-antenna communication systems, machine learning inference, data compression, audio and ultrasound applications, among many others. In the past, a wide range of mixed-signal as well as digital spatial transform circuits have been proposed-it is, however, a longstanding question whether analog or digital transforms are superior in terms of throughput, power, and area. In this paper, we focus on Hadamard transforms and perform a systematic comparison of state-of-the-art analog and digital circuits implementing spatial transforms in the same 65 nm CMOS technology. We analyze the trade-offs between throughput, power, and area, and we identify regimes in which mixed-signal or digital Hadamard transforms are preferable. Our comparison reveals that (i) there is no clear winner and (ii) analog-to-digital conversion is often dominating area and energy efficiency-and not the spatial transform. 
    more » « less
  3. Abstract This paper discusses a device‐level implementation of a travelling wave (TW) protection device (PD) designed for a real low‐voltage DC microgrid. The TWPD fault detection and location algorithm is executed on a commercial digital signal processor (DSP) board, involving signal sampling at 1 MHz via the DSP board's analog‐to‐digital converter (ADC). The analogue input card measures positive pole, negative pole and pole‐to‐pole voltages at the TWPD location. Upon a successful fault detection using a second‐order high‐pass filter, the voltage data is normalised and multi‐resolution analysis (MRA) is performed on a 128‐sample buffer around the TW arrival time. MRA employs the discrete wavelet transform (DWT) to capture high‐frequency voltage patterns, and then the Parseval's energy theorem quantifies these TW characteristics by computing the energy of reconstructed wavelet coefficients. These energy values per decomposed frequency band are the basis for training a random forest classifier that predicts fault location and type. The TWPD is fully implemented and connected to a real DC microgrid in Albuquerque, NM, USA, for validation, and results are shown for field tests verifying the performance under faults. 
    more » « less
  4. All-digital basestation (BS) architectures for millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO), which equip each radio-frequency chain with dedicated data converters, have advantages in spectral efficiency, flexibility, and baseband-processing simplicity over hybrid analog-digital solutions. For all-digital architectures to be competitive with hybrid solutions in terms of power consumption, novel signal-processing methods and baseband architectures are necessary. In this paper, we demonstrate that adapting the resolution of the analog-to-digital converters (ADCs) and spatial equalizer of an all-digital system to the communication scenario (e.g., the number of users, modulation scheme, and propagation conditions) enables orders-of-magnitude power savings for realistic mmWave channels. For example, for a 256-BS-antenna 16-user system supporting 1 GHz bandwidth, a traditional baseline architecture designed for a 64-user worst-case scenario would consume 23 W in 28 nm CMOS for the ADC array and the spatial equalizer, whereas a resolution-adaptive architecture is able to reduce the power consumption by 6.7×. 
    more » « less
  5. We investigate the energy efficiency (EE) problem in a downlink multi-user millimeter wave (mmWave) rate-splitting multiple access (RSMA) system and propose an energy-efficient one-layer RSMA hybrid precoder design for K users with quality of service constraints. This scheme is applicable to the design of sustainable sixth generation (6G) cellular networks. To make the problem tractable, the analog and the digital precoder designs are decoupled. First, the analog precoder is designed to maximize the desired signal power of each user while ignoring multi-user interference. Second, the digital precoder is designed to manage multi-user interference according to the EE optimization design criterion. We adopt a successive convex approximation-based algorithm for joint optimization of the digital precoders, power, and common rate allocation. Simulation results show that the proposed RSMA scheme always performs at least as well as a baseline spatial division multiple access (SDMA) hybrid precoding scheme and outperforms it under certain channel conditions. These results suggest that RSMA is suitable as a flexible physical layer design for future 6G mmWave networks. 
    more » « less