Abstract In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring important thermodynamic consistency. When applying ML to fit a universal EOS model, there are two key requirements: (1) a high prediction accuracy to ensure precise estimation of relevant physics properties and (2) physical interpretability to support important physics-related downstream applications. We first identify a set of fundamental challenges from the accuracy perspective, including an extremely wide range of input/output space and highly sparse training data. We demonstrate that while a neural network (NN) model may fit the EOS data well, the black-box nature makes it difficult to provide physically interpretable results, leading to weak accountability of prediction results outside the training range and lack of guarantee to meet important thermodynamic consistency constraints. To this end, we propose a principled deep regression model that can be trained following a meta-learning style to predict the desired quantities with a high accuracy using scarce training data. We further introduce a uniquely designed kernel-based regularizer for accurate uncertainty quantification. An ensemble technique is leveraged to battle model overfitting with improved prediction stability. Auto-differentiation is conducted to verify that necessary thermodynamic consistency conditions are maintained. Our evaluation results show an excellent fit of the EOS table and the predicted values are ready to use for important physics-related tasks.
more »
« less
Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning
Abstract Using deep convolutional neural network (CNN), the nature of the QCD transition can be identified from the final-state pion spectra from hybrid model simulations of heavy-ion collisions that combines a viscous hydrodynamic model with a hadronic cascade “after-burner”. Two different types of equations of state (EoS) of the medium are used in the hydrodynamic evolution. The resulting spectra in transverse momentum and azimuthal angle are used as the input data to train the neural network to distinguish different EoS. Different scenarios for the input data are studied and compared in a systematic way. A clear hierarchy is observed in the prediction accuracy when using the event-by-event, cascade-coarse-grained and event-fine-averaged spectra as input for the network, which are about 80%, 90% and 99%, respectively. A comparison with the prediction performance by deep neural network (DNN) with only the normalized pion transverse momentum spectra is also made. High-level features of pion spectra captured by a carefully-trained neural network were found to be able to distinguish the nature of the QCD transition even in a simulation scenario which is close to the experiments.
more »
« less
- Award ID(s):
- 2004571
- PAR ID:
- 10253616
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 80
- Issue:
- 6
- ISSN:
- 1434-6044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The equation of state (EoS) of QCD is a crucial input for the modeling of heavy-ion-collision (HIC) and neutron-star-merger systems. Calculations of the fundamental theory of QCD, which could yield the true EoS, are hindered by the infamous Fermi sign problem which only allows direct simulations at zero or imaginary baryonic chemical potential. As a direct consequence, the current coverage of the QCD phase diagram by lattice simulations is limited. In these proceedings, two different equations of state based on first-principle lattice QCD (LQCD) calculations are discussed. The first is solely informed by the fundamental theory by utilizing all available diagonal and non-diagonal susceptibilities up to O(µ 4 B) in order to reconstruct a full EoS at finite baryon number, electric charge and strangeness chemical potentials. For the second, we go beyond information from the lattice in order to explore the conjectured phase structure, not yet determined by LQCD methods, to assist the experimental HIC community in their search for the critical point. We incorporate critical behavior into this EoS by relying on the principle of universality classes, of which QCD belongs to the 3D Ising Model. This allows one to study the effects of a singularity on the thermodynamical quantities that make up the equation of state used for hydrodynamical simulations of HICs. Additionally, we ensure that these EoSs are valid for applications to HICs by enforcing conditions of strangeness neutrality and fixed charge-to-baryonnumber ratio.more » « less
-
Lattice QCD calculations of two-nucleon interactions have been underway for about a decade, but still haven’t reached the pion mass regime necessary for matching onto effective field theories and extrapolating to the physical point. Furthermore, results from different methods, including the use of the Lüscher formalism with different types of operators, as well as the HALQCD potential method, do not agree even qualitatively at very heavy pion mass. We investigate the role that different operators employed in the literature may play on the extraction of spectra for use within the Lüscher method. We first explore expectations from Effective Field Theory solved within a finite volume, for which the exact spectrum may be computed given different physical scenarios. We then present preliminary lattice QCD results for two-nucleon spectra calculated using different operators on a common lattice ensemble.more » « less
-
null (Ed.)Abstract The production of $$\pi ^{\pm }$$ π ± , $$\mathrm{K}^{\pm }$$ K ± , $$\mathrm{K}^{0}_{S}$$ K S 0 , $$\mathrm{K}^{*}(892)^{0}$$ K ∗ ( 892 ) 0 , $$\mathrm{p}$$ p , $$\phi (1020)$$ ϕ ( 1020 ) , $$\Lambda $$ Λ , $$\Xi ^{-}$$ Ξ - , $$\Omega ^{-}$$ Ω - , and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of $$\sqrt{s}$$ s = 13 TeV at midrapidity ( $$|y|<0.5$$ | y | < 0.5 ) as a function of transverse momentum ( $$p_{\mathrm{T}}$$ p T ) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $$p_{\mathrm{T}}$$ p T distributions of $$\mathrm{K}^{0}_{S}$$ K S 0 , $$\Lambda $$ Λ , and $$\overline{\Lambda }$$ Λ ¯ in inelastic pp collisions at $$\sqrt{s} = 7$$ s = 7 TeV are reported here for the first time. The $$p_{\mathrm{T}}$$ p T distributions are studied at midrapidity within the transverse momentum range $$0\le p_{\mathrm{T}}\le 20$$ 0 ≤ p T ≤ 20 GeV/ c , depending on the particle species. The $$p_{\mathrm{T}}$$ p T spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $$\sqrt{s}$$ s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $$p_{\mathrm{T}}$$ p T with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $$x_{\mathrm{T}}\equiv 2p_{\mathrm{T}}/\sqrt{s}$$ x T ≡ 2 p T / s scaling properties of hadron production are also studied. As the collision energy increases from $$\sqrt{s}$$ s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $$\sqrt{s}$$ s , while ratios for multi-strange hadrons indicate enhancements. The $$p_\mathrm{{T}}$$ p T -differential cross sections of $$\pi ^{\pm }$$ π ± , $$\mathrm {K}^{\pm }$$ K ± and $$\mathrm {p}$$ p ( $$\overline{\mathrm{p}}$$ p ¯ ) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $$\pi ^{\pm }$$ π ± and $$\mathrm{p}$$ p ( $$\overline{\mathrm{p}}$$ p ¯ ) at high $$p_\mathrm{{T}}$$ p T .more » « less
-
Within the large momentum effective theory framework, we report the results of the first direct lattice-QCD calculation of the valence quark distribution in the pion. Our results are comparable quantitatively with the results extracted from experimental data as well as from Dyson-Schwinger equation. Future calculations at physical pion mass and larger momentum will be able to discern discrepancies in various existing analyses.more » « less
An official website of the United States government

