We report the first double-differential neutrino-argon cross section measurement made simultaneously for final states with and without protons for the inclusive muon neutrino charged-current interaction channel. The proton kinematics of this channel are further explored with a differential cross section measurement as a function of the leading proton’s kinetic energy that extends across the detection threshold. These measurements use data collected with the MicroBooNE detector fromprotons on target from the Fermilab booster neutrino beam with a mean neutrino energy of. Extensive data-driven model validation utilizing the conditional constraint formalism is employed. This motivates enlarging the uncertainties with an empirical reweighting approach to minimize the possibility of extracting biased cross section results. The extracted nominal flux-averaged cross sections are compared to widely used event generator predictions revealing severe mismodeling of final states without protons for muon neutrino charged-current interactions, possibly from insufficient treatment of final state interactions. These measurements provide a wealth of new information useful for improving event generators which will enhance the sensitivity of precision measurements in neutrino experiments.
This content will become publicly available on November 1, 2025
We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab’s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interactions, and is crucial for future accelerator-based neutrino oscillation experiments. Using a dataset corresponding toprotons on target, we present single-differential cross sections in muon and neutral pion momenta, scattering angles with respect to the beam for the outgoing muon and neutral pion, as well as the opening angle between the muon and neutral pion. Data extracted cross sections are compared to generator predictions. We report good agreement between the data and the models for scattering angles, except for an over-prediction by generators at muon forward angles. Similarly, the agreement between data and the models as a function of momentum is good, except for an underprediction by generators in the medium momentum ranges, 200–400 MeV for muons and 100–200 MeV for pions.
- PAR ID:
- 10556545
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 9
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Published by the American Physical Society 2024 -
A detailed understanding of inclusive muon neutrino charged-current interactions on argon is crucial to the study of neutrino oscillations in current and future experiments using liquid argon time projection chambers. To that end, we report a comprehensive set of differential cross section measurements for this channel that simultaneously probe the leptonic and hadronic systems by dividing the channel into final states with and without protons. Measurements of the proton kinematics and proton multiplicity of the final state are also presented. For these measurements, we utilize data collected with the MicroBooNE detector fromprotons on target from the Fermilab booster neutrino beam at a mean neutrino energy of approximately 0.8 GeV. We present in detail the cross section extraction procedure, including the unfolding, and model validation that uses data to model comparisons and the conditional constraint formalism to detect mismodeling that may introduce biases to extracted cross sections that are larger than their uncertainties. The validation exposes insufficiencies in the overall model, motivating the inclusion of an additional data-driven reweighting systematic to ensure the accuracy of the unfolding. The extracted results are compared to a number of event generators and their performance is discussed with a focus on the regions of phase space that indicate the greatest need for modeling improvements.
Published by the American Physical Society 2024 -
We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding toprotons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produceandmesons, which could decay into dark-matter (DM) particles mediated via a dark photon. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameteras a function of the dark-photon mass in the range. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particlesfor two benchmark models with mass ratiosand 2 and for dark fine-structure constants.
Published by the American Physical Society 2024 -
Accelerator based neutrino oscillation experiments seek to measure the relative number of electron and muon (anti)neutrinos at differentvalues. However high statistics studies of neutrino interactions are almost exclusively measured using muon (anti)neutrinos since the dominant flavor of neutrinos produced by accelerator based beams are of the muon type. This work reports new measurements of electron (anti)neutrinos interactions in hydrocarbon, obtained by strongly suppressing backgrounds initiated by muon flavor (anti)neutrinos. Double differential cross sections as a function of visible energy transfer,, and transverse momentum transfer,, or three momentum transfer,are presented.
Published by the American Physical Society 2024 -
The hadron mass can be obtained through the calculation of the trace of the energy-momentum tensor in the hadron which includes the trace anomaly and sigma terms. The anomaly due to conformal symmetry breaking is believed to be an important ingredient for hadron mass generation and confinement. In this work, we will present the calculation of the glue part of the trace anomaly form factors of the pion up toand the nucleon up to. The calculations are performed on a domain wall fermion ensemble with overlap valence quarks at seven valence pion masses varying fromto, including the unitary point. We calculate the radius of the glue trace anomaly for the pion and the nucleon from theexpansion. By performing a two-dimensional Fourier transform on the glue trace anomaly form factors in the infinite momentum frame with no energy transfer, we also obtain their spatial distributions for several valence quark masses. The results are qualitatively extrapolated to the physical valence pion mass with systematic errors from the unphysical sea quark mass, discretization effects in the renormalization sum rule, and finite-volume effects to be addressed in the future. We find the pion’s form factor changes sign, as does its spatial distribution, for light quark masses. This explains how the trace anomaly contribution to the pion mass approaches zero toward the chiral limit.
Published by the American Physical Society 2024