skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Submodular Observation Selection and Information Gathering for Quadratic Models
We study the problem of selecting most informative subset of a large observation set to enable accurate estimation of unknown parameters. This problem arises in a variety of settings in machine learning and signal processing including feature selection, phase retrieval, and target localization. Since for quadratic measurement models the moment matrix of the optimal estimator is generally unknown, majority of prior work resorts to approximation techniques such as linearization of the observation model to optimize the alphabetical optimality criteria of an approximate moment matrix. Conversely, by exploiting a connection to the classical Van Trees’ inequality, we derive new alphabetical optimality criteria without distorting the relational structure of the observation model. We further show that under certain conditions on parameters of the problem these optimality criteria are monotone and (weak) submodular set functions. These results enable us to develop an efficient greedy observation selection algorithm uniquely tailored for quadratic models, and provide theoretical bounds on its achievable utility.  more » « less
Award ID(s):
1809327
PAR ID:
10097240
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 36th International Conference on Machine Learning
Volume:
97
Page Range / eLocation ID:
2653--2662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of observation selection in a resource-constrained networked sensing system, where the objective is to select a small subset of observations from a large network to perform a state estimation task. When the measurements are gathered using nonlinear systems, majority of prior work resort to approximation techniques such as linearization of the measurement model to utilize the methods developed for linear models, e.g., (weak) submodular objectives and greedy selection schemes. In contrast, when the measurement model is quadratic, e.g., the range measurements in a radar system, by exploiting a connection to the classical Van Trees' inequality, we derive new optimality criteria without distorting the relational structure of the measurement model. We further show that under certain conditions these optimality criteria are monotone and (weak) submodular set functions. These results enable us to develop an efficient greedy observation selection algorithm uniquely tailored for constrained networked sensing systems following quadratic models and provide theoretical bounds on its achievable utility. Extensive numerical experiments demonstrate efficacy of the proposed framework. 
    more » « less
  2. Inverse models arise in various environmental applications, ranging from atmospheric modeling to geosciences. Inverse models can often incorporate predictor variables, similar to regression, to help estimate natural processes or parameters of interest from observed data. Although a large set of possible predictor variables may be included in these inverse or regression models, a core challenge is to identify a small number of predictor variables that are most informative of the model, given limited observations. This problem is typically referred to as model selection. A variety of criterion-based approaches are commonly used for model selection, but most follow a two-step process: first, select predictors using some statistical criteria, and second, solve the inverse or regression problem with these predictor variables. The first step typically requires comparing all possible combinations of candidate predictors, which quickly becomes computationally prohibitive, especially for large-scale problems. In this work, we develop a one-step approach for linear inverse modeling, where model selection and the inverse model are performed in tandem. We reformulate the problem so that the selection of a small number of relevant predictor variables is achieved via a sparsity-promoting prior. Then, we describe hybrid iterative projection methods based on flexible Krylov subspace methods for efficient optimization. These approaches are well-suited for large-scale problems with many candidate predictor variables. We evaluate our results against traditional, criteria-based approaches. We also demonstrate the applicability and potential benefits of our approach using examples from atmospheric inverse modeling based on NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite. 
    more » « less
  3. Abstract. Inverse models arise in various environmental applications, ranging from atmospheric modeling to geosciences. Inverse models can often incorporate predictor variables, similar to regression, to help estimate natural processes or parameters of interest from observed data. Although a large set of possible predictor variables may be included in these inverse or regression models, a core challenge is to identify a small number of predictor variables that are most informative of the model, given limited observations. This problem is typically referred to as model selection. A variety of criterion-based approaches are commonly used for model selection, but most follow a two-step process: first, select predictors using some statistical criteria, and second, solve the inverse or regression problem with these predictor variables. The first step typically requires comparing all possible combinations of candidate predictors, which quickly becomes computationally prohibitive, especially for large-scale problems. In this work, we develop a one-step approach, where model selection and the inverse model are performed in tandem. We reformulate the problem so that the selection of a small number of relevant predictor variables is achieved via a sparsity-promoting prior. Then, we describe hybrid iterative projection methods based on flexible Krylov subspace methods for efficient optimization.  These approaches are well-suited for large-scale problems with many candidate predictor variables. We evaluate our results against traditional, criteria-based approaches. We also demonstrate the applicability and potential benefits of our approach using examples from atmospheric inverse modeling based on NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite. 
    more » « less
  4. We develop a novel shrinkage rule for prediction in a high-dimensional non-exchangeable hierarchical Gaussian model with an unknown spiked covariance structure. We propose a family of priors for the mean parameter, governed by a power hyper-parameter, which encompasses independent to highly dependent scenarios. Corresponding to popular loss functions such as quadratic, generalized absolute, and Linex losses, these prior models induce a wide class of shrinkage predictors that involve quadratic forms of smooth functions of the unknown covariance. By using uniformly consistent estimators of these quadratic forms, we propose an efficient procedure for evaluating these predictors which outperforms factor model based direct plug-in approaches. We further improve our predictors by considering possible reduction in their variability through a novel coordinate-wise shrinkage policy that only uses covariance level information and can be adaptively tuned using the sample eigen structure. Finally, we extend our disaggregate model based methodology to prediction in aggregate models. We propose an easy-to-implement functional substitution method for predicting linearly aggregated targets and establish asymptotic optimality of our proposed procedure. We present simulation experiments as well as real data examples illustrating the efficacy of the proposed method. 
    more » « less
  5. In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for a given value of the output LH. The unknown parameters include those that have been identified as the most influential factors on the simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output mapping, and (ii) performing inverse modeling and computing the posterior distributions of the input parameters using observation data for a given value of the output LH. The development of the surrogate model is carried out with a Bayesian procedure based on the variable selection methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quantifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated posterior probabilities. 
    more » « less