skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Submodularity of Quadratic Observation Selection in Constrained Networked Sensing Systems
We study the problem of observation selection in a resource-constrained networked sensing system, where the objective is to select a small subset of observations from a large network to perform a state estimation task. When the measurements are gathered using nonlinear systems, majority of prior work resort to approximation techniques such as linearization of the measurement model to utilize the methods developed for linear models, e.g., (weak) submodular objectives and greedy selection schemes. In contrast, when the measurement model is quadratic, e.g., the range measurements in a radar system, by exploiting a connection to the classical Van Trees' inequality, we derive new optimality criteria without distorting the relational structure of the measurement model. We further show that under certain conditions these optimality criteria are monotone and (weak) submodular set functions. These results enable us to develop an efficient greedy observation selection algorithm uniquely tailored for constrained networked sensing systems following quadratic models and provide theoretical bounds on its achievable utility. Extensive numerical experiments demonstrate efficacy of the proposed framework.  more » « less
Award ID(s):
1809327
PAR ID:
10170196
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 American Control Conference (ACC)
Page Range / eLocation ID:
4671 to 4676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of selecting most informative subset of a large observation set to enable accurate estimation of unknown parameters. This problem arises in a variety of settings in machine learning and signal processing including feature selection, phase retrieval, and target localization. Since for quadratic measurement models the moment matrix of the optimal estimator is generally unknown, majority of prior work resorts to approximation techniques such as linearization of the observation model to optimize the alphabetical optimality criteria of an approximate moment matrix. Conversely, by exploiting a connection to the classical Van Trees’ inequality, we derive new alphabetical optimality criteria without distorting the relational structure of the observation model. We further show that under certain conditions on parameters of the problem these optimality criteria are monotone and (weak) submodular set functions. These results enable us to develop an efficient greedy observation selection algorithm uniquely tailored for quadratic models, and provide theoretical bounds on its achievable utility. 
    more » « less
  2. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. While these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids, knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem is known in advance as well as the online setting where the input data is revealed over time. For the offline setting, we give a nearly optimal bi-criteria approximation algorithm that relies on new extensions of the classical greedy algorithm. For the online version of the problem, we give an algorithm that returns a bi-criteria solution with sub-linear regret. 
    more » « less
  3. In networked control systems, the sensory signals are often quantized before being transmitted to the controller. Consequently, performance is affected by the coarseness of this quantization process. Modern communication technologies allow users to obtain resolution-varying quantized measurements based on the prices paid. In this paper, we consider the problem of joint optimal controller synthesis and quantizer scheduling for a partially observed quantized-feedback linear-quadratic-Gaussian system, where the measurements are quantized before being sent to the controller. The system is presented with several choices of quantizers, along with the cost of using each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike an optimal balance between control performance and quantization cost. When the innovation signal is quantized instead of the measurement, the problem is decoupled into two optimization problems: one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal controller is found by solving a Riccati equation and the optimal quantizer-selection policy is found by solving a linear program---both of which can be solved offline. 
    more » « less
  4. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. Although these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids and knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem are known in advance and the online setting where the input data are revealed over time. For the offline setting, we give a general (nearly) optimal bicriteria approximation algorithm that relies on new extensions of classical algorithms for submodular maximization. For the online version of the problem, we give an algorithm that returns a bicriteria solution with sublinear regret. Summary of Contribution: Constrained submodular maximization is one of the core areas in combinatorial optimization with a wide variety of applications in operations research and computer science. Over the last decades, both communities have been interested on the design and analysis of new algorithms with provable guarantees. Sensor location, influence maximization and data summarization are some of the applications of submodular optimization that lie at the intersection of the aforementioned communities. Particularly, our work focuses on optimizing several submodular functions simultaneously. We provide new insights and algorithms to the offline and online variants of the problem which significantly expand the related literature. At the same time, we provide a computational study that supports our theoretical results. 
    more » « less
  5. Dynamic network topology can pose important challenges to communication and control protocols in networks of autonomous vehicles. For instance, maintaining connectivity is a key challenge in unmanned aerial vehicle (UAV) networks. However, tracking and computational resources of the observer module might not be sufficient for constant monitoring of all surrounding nodes in large-scale networks. In this paper, we propose an optimal measurement policy for network topology monitoring under constrained resources. To this end, We formulate the localization of multiple objects in terms of linear networked systems and solve it using Kalman filtering with intermittent observation. The proposed policy includes two sequential steps. We first find optimal measurement attempt probabilities for each target using numerical optimization methods to assign the limited number of resources among targets. The optimal resource allocation follows a waterfall-like solution to assign more resources to targets with lower measurement success probability. This provides a 10% to 60% gain in prediction accuracy. The second step is finding optimal on-off patterns for measurement attempts for each target over time. We show that a regular measurement pattern that evenly distributed resources over time outperforms the two extreme cases of using all measurement resources either in the beginning or at the end of the measurement cycle. Our proof is based on characterizing the fixed-point solution of the error covariance matrix for regular patterns. Extensive simulation results confirm the optimality of the most alternating pattern with up to 10-fold prediction improvement for different scenarios. These two guidelines define a general policy for target tracking under constrained resources with applications to network topology prediction of autonomous systems 
    more » « less