State-of-the-art subspace clustering methods are based on the self-expressive model, which represents each data point as a linear combination of other data points. However, such methods are designed for a finite sample dataset and lack the ability to generalize to out-of-sample data. Moreover, since the number of self-expressive coefficients grows quadratically with the number of data points, their ability to handle large-scale datasets is often limited. In this paper, we propose a novel framework for subspace clustering, termed Self-Expressive Network (SENet), which employs a properly designed neural network to learn a self-expressive representation of the data. We show that our SENet can not only learn the self-expressive coefficients with desired properties on the training data, but also handle out-of-sample data. Besides, we show that SENet can also be leveraged to perform subspace clustering on large-scale datasets. Extensive experiments conducted on synthetic data and real world benchmark data validate the effectiveness of the proposed method. In particular, SENet yields highly competitive performance on MNIST, Fashion MNIST and Extended MNIST and state-of-the-art performance on CIFAR-10.
more »
« less
Evolutionary Subspace Clustering: Discovering Structure in Self-expressive Time-series Data
An evolutionary self-expressive model for clustering a collection of evolving data points that lie on a union of low-dimensional evolving subspaces is proposed. A parsimonious representation of data points at each time step is learned via a non-convex optimization framework that exploits the self-expressiveness property of the evolving data while taking into account data representation from the preceding time step. The resulting scheme adaptively learns an innovation matrix that captures changes in self-representation of data in consecutive time steps as well as a smoothing parameter reflective of the rate of data evolution. Extensive experiments demonstrate superiority of the proposed framework overs state-of-the-art static subspace clustering algorithms and existing evolutionary clustering schemes.
more »
« less
- Award ID(s):
- 1809327
- PAR ID:
- 10097241
- Date Published:
- Journal Name:
- IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Page Range / eLocation ID:
- 3707-3711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep neural network clustering is superior to the conventional clustering methods due to deep feature extraction and nonlinear dimensionality reduction. Nevertheless, deep neural network leads to a rough representation regarding the inherent relationship of the data points. Therefore, it is still difficult for deep neural network to exploit the effective structure for direct clustering. To address this issue,we propose a robust embedded deep K-means clustering (REDKC) method. The proposed RED-KC approach utilizes the δ-norm metric to constrain the feature mapping process of the auto-encoder network, so that data are mapped to a latent feature space, which is more conducive to the robust clustering. Compared to the existing auto-encoder networks with the fixed prior, the proposed RED-KC is adaptive during the process of feature mapping. More importantly, the proposed RED-KC embeds the clustering process with the autoencoder network, such that deep feature extraction and clustering can be performed simultaneously. Accordingly, a direct and efficient clustering could be obtained within only one step to avoid the inconvenience of multiple separate stages, namely, losing pivotal information and correlation. Consequently, extensive experiments are provided to validate the effectiveness of the proposed approach.more » « less
-
Discovering and clustering subspaces in high-dimensional data is a fundamental problem of machine learning with a wide range of applications in data mining, computer vision, and pattern recognition. Earlier methods divided the problem into two separate stages of finding the similarity matrix and finding clusters. Similar to some recent works, we integrate these two steps using a joint optimization approach. We make the following contributions: (i) we estimate the reliability of the cluster assignment for each point before assigning a point to a subspace. We group the data points into two groups of “certain” and “uncertain”, with the assignment of latter group delayed until their subspace association certainty improves. (ii) We demonstrate that delayed association is better suited for clustering subspaces that have ambiguities, i.e. when subspaces intersect or data are contaminated with outliers/noise. (iii) We demonstrate experimentally that such delayed probabilistic association leads to a more accurate self-representation and final clusters. The proposed method has higher accuracy both for points that exclusively lie in one subspace, and those that are on the intersection of subspaces. (iv) We show that delayed association leads to huge reduction of computational cost, since it allows for incremental spectral clusteringmore » « less
-
null (Ed.)Many real-world applications involve longitudinal data, consisting of observations of several variables, where different subsets of variables are sampled at irregularly spaced time points. We introduce the Longitudinal Gaussian Process Latent Variable Model (L-GPLVM), a variant of the Gaussian Process Latent Variable Model, for learning compact representations of such data. L-GPLVM overcomes a key limitation of the Dynamic Gaussian Process Latent Variable Model and its variants, which rely on the assumption that the data are fully observed over all of the sampled time points. We describe an effective approach to learning the parameters of L-GPLVM from sparse observations, by coupling the dynamical model with a Multitask Gaussian Process model for sampling of the missing observations at each step of the gradient-based optimization of the variational lower bound. We further show the advantage of the Sparse Process Convolution framework to learn the latent representation of sparsely and irregularly sampled longitudinal data with minimal computational overhead relative to a standard Latent Variable Model. We demonstrated experiments with synthetic data as well as variants of MOCAP data with varying degrees of sparsity of observations that show that L-GPLVM substantially and consistently outperforms the state-of-the-art alternatives in recovering the missing observations even when the available data exhibits a high degree of sparsity. The compact representations of irregularly sampled and sparse longitudinal data can be used to perform a variety of machine learning tasks, including clustering, classification, and regression.more » « less
-
We consider the problem of simultaneously clustering and learning a linear representation of data lying close to a union of low-dimensional manifolds, a fundamental task in machine learning and computer vision. When the manifolds are assumed to be linear subspaces, this reduces to the classical problem of subspace clustering, which has been studied extensively over the past two decades. Unfortunately, many real-world datasets such as natural images can not be well approximated by linear subspaces. On the other hand, numerous works have attempted to learn an appropriate transformation of the data, such that data is mapped from a union of general non-linear manifolds to a union of linear subspaces (with points from the same manifold being mapped to the same subspace). However, many existing works have limitations such as assuming knowledge of the membership of samples to clusters, requiring high sampling density, or being shown theoretically to learn trivial representations. In this paper, we propose to optimize the Maximal Coding Rate Reduction metric with respect to both the data representation and a novel doubly stochastic cluster membership, inspired by state-of-the-art subspace clustering results. We give a parameterization of such a representation and membership, allowing efficient mini-batching and one-shot initialization. Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods, and further learns a latent linear representation of the data.more » « less