- NSF-PAR ID:
- 10209116
- Date Published:
- Journal Name:
- ACM/IMS Conference on Foundations of Data Science
- Page Range / eLocation ID:
- 183 to 188
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Gaussian processes offer an attractive framework for predictive modeling from longitudinal data, i.e., irregularly sampled, sparse observations from a set of individuals over time. However, such methods have two key shortcomings: (i) They rely on ad hoc heuristics or expensive trial and error to choose the effective kernels, and (ii) They fail to handle multilevel correlation structure in the data. We introduce Longitudinal deep kernel Gaussian process regression (L-DKGPR) to overcome these limitations by fully automating the discovery of complex multilevel correlation structure from longitudinal data. Specifically, L-DKGPR eliminates the need for ad hoc heuristics or trial and error using a novel adaptation of deep kernel learning that combines the expressive power of deep neural networks with the flexibility of non-parametric kernel methods. L-DKGPR effectively learns the multilevel correlation with a novel additive kernel that simultaneously accommodates both time-varying and the time-invariant effects. We derive an efficient algorithm to train L-DKGPR using latent space inducing points and variational inference. Results of extensive experiments on several benchmark data sets demonstrate that L-DKGPR significantly outperforms the state-of-the-art longitudinal data analysis (LDA) methods.more » « less
-
In many machine learning problems, one has to work with data of different types, including continuous, discrete, and categorical data. Further, it is often the case that many of these data are missing from the database. This paper proposes a Gaussian process framework that efficiently captures the information from mixed numerical and categorical data that effectively incorporates missing variables. First, we propose a generative model for the mixed-type data. The generative model exploits Gaussian processes with kernels constructed from the latent vectors. We also propose a method for inference of the unknowns, and in its implementation, we rely on a sparse spectrum approximation of the Gaussian processes and variational inference. We demonstrate the performance of the method for both supervised and unsupervised tasks. First, we investigate the imputation of missing variables in an unsupervised setting, and then we show the results of joint imputation and classification on IBM employee data.more » « less
-
Summary In longitudinal data analysis one frequently encounters non-Gaussian data that are repeatedly collected for a sample of individuals over time. The repeated observations could be binomial, Poisson or of another discrete type or could be continuous. The timings of the repeated measurements are often sparse and irregular. We introduce a latent Gaussian process model for such data, establishing a connection to functional data analysis. The functional methods proposed are non-parametric and computationally straightforward as they do not involve a likelihood. We develop functional principal components analysis for this situation and demonstrate the prediction of individual trajectories from sparse observations. This method can handle missing data and leads to predictions of the functional principal component scores which serve as random effects in this model. These scores can then be used for further statistical analysis, such as inference, regression, discriminant analysis or clustering. We illustrate these non-parametric methods with longitudinal data on primary biliary cirrhosis and show in simulations that they are competitive in comparisons with generalized estimating equations and generalized linear mixed models.
-
Abstract We describe a stochastic, dynamical system capable of inference and learning in a probabilistic latent variable model. The most challenging problem in such models—sampling the posterior distribution over latent variables—is proposed to be solved by harnessing natural sources of stochasticity inherent in electronic and neural systems. We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics. The model parameters are learned by simultaneously evolving according to another continuous-time equation, thus bypassing the need for digital accumulators or a global clock. Moreover, we show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the L0 sparse regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm. This allows the model to properly incorporate the notion of sparsity rather than having to resort to a relaxed version of sparsity to make optimization tractable. Simulations of the proposed dynamical system on both synthetic and natural image data sets demonstrate that the model is capable of probabilistically correct inference, enabling learning of the dictionary as well as parameters of the prior.more » « less
-
null (Ed.)We consider the problem of learning predictive models from longitudinal data, consisting of irregularly repeated, sparse observations from a set of individuals over time. Such data often exhibit longitudinal correlation (LC) (correlations among observations for each individual over time), cluster correlation (CC) (correlations among individuals that have similar characteristics), or both. These correlations are often accounted for using mixed effects models that include fixed effects and random effects, where the fixed effects capture the regression parameters that are shared by all individuals, whereas random effects capture those parameters that vary across individuals. However, the current state-of-the-art methods are unable to select the most predictive fixed effects and random effects from a large number of variables, while accounting for complex correlation structure in the data and non-linear interactions among the variables. We propose Longitudinal Multi-Level Factorization Machine (LMLFM), to the best of our knowledge, the first model to address these challenges in learning predictive models from longitudinal data. We establish the convergence properties, and analyze the computational complexity, of LMLFM. We present results of experiments with both simulated and real-world longitudinal data which show that LMLFM outperforms the state-of-the-art methods in terms of predictive accuracy, variable selection ability, and scalability to data with large number of variables. The code and supplemental material is available at https://github.com/junjieliang672/LMLFM.more » « less