skip to main content


Title: Design and Actuation of a Fabric-Based Worm-Like Robot
Soft-bodied animals, such as earthworms, are capable of contorting their body to squeeze through narrow spaces, create or enlarge burrows, and move on uneven ground. In many applications such as search and rescue, inspection of pipes and medical procedures, it may be useful to have a hollow-bodied robot with skin separating inside and outside. Textiles can be key to such skins. Inspired by earthworms, we developed two new robots: FabricWorm and MiniFabricWorm. We explored the application of fabric in soft robotics and how textile can be integrated along with other structural elements, such as three-dimensional (3D) printed parts, linear springs, and flexible nylon tubes. The structure of FabricWorm consists of one third the number of rigid pieces as compared to its predecessor Compliant Modular Mesh Worm-Steering (CMMWorm-S), while the structure of MiniFabricWorm consists of no rigid components. This article presents the design of such a mesh and its limitations in terms of structural softness. We experimentally measured the stiffness properties of these robots and compared them directly to its predecessors. FabricWorm and MiniFabricWorm are capable of peristaltic locomotion with a maximum speed of 33 cm/min (0.49 body-lengths/min) and 13.8 cm/min (0.25 body-lengths/min), respectively.  more » « less
Award ID(s):
1844463
NSF-PAR ID:
10097391
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biomimetics
Volume:
4
Issue:
1
ISSN:
2313-7673
Page Range / eLocation ID:
13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft robots employ flexible and compliant materials to perform adaptive tasks and navigate uncertain environments. However, soft robots are often unable to achieve forces and precision on the order of rigid-bodied robots. In this paper, we propose a new class of mobile soft robots that can reversibly transition between compliant and stiff states without reconfiguration. The robot can passively conform or actively control its shape, stiffen in its current configuration to function as a rigid-bodied robot, then return to its flexible form. The robotic structure consists of passive granular material surrounded by an active membrane. The membrane is composed of interconnected robotic sub-units that can control the packing density of the granular material and exploit jamming behaviors by varying the length of the interconnecting cables. Each robotic sub-unit uses a differential drive system to achieve locomotion and self-reconfigurability. We present the robot design and perform a set of locomotion and object manipulation experiments to characterize the robot's performance in soft and rigid states. We also introduce a simulation framework in which we model the jamming soft robot design and study the scalability of this class of robots. The proposed concept demonstrates the properties of both soft and rigid robots, and has the potential to bridge the gap between the two 
    more » « less
  2. The development of effective reduced order models for soft robots is paving the way toward the development of a new generation of model based techniques, which leverage classic rigid robot control. However, several soft robot features differentiate the soft-bodied case from the rigid-bodied one. First, soft robots are built to work in the environment, so the presence of obstacles in their path should always be explicitly accounted by their control systems. Second, due to the complex kinematics, the actuation of soft robots is mapped to the state space nonlinearly resulting in spaces with different sizes. Moreover, soft robots often include internal constraints and thus actuation is typically limited in the range of action and it is often unidirectional. This paper proposes a control pipeline to tackle the challenge of controlling soft robots with internal constraints in environments with obstacles. We show how the constraints on actuation can be propagated and integrated with geometrical constraints, taking into account physical limits imposed by the presence of obstacles. We present a hierarchical control architecture capable of handling these constraints, with which we are able to regulate the position in space of the tip of a soft robot with the discussed characteristics. 
    more » « less
  3. null (Ed.)
    Regulation systems for fluid-driven soft robots predominantly consist of inflexible and bulky components. These rigid structures considerably limit the adaptability and mobility of these robots. Soft valves in various forms for fluidic actuators have been developed, primarily fluidically or electrically driven. However, fluidic soft valves require external pressure sources that limit robot locomotion. State-of-the-art electrostatic valves are unable to modulate pressure beyond 3.5 kPa with a sufficient flow rate (>6 mL⋅min −1 ). In this work, we present an electrically powered soft valve for hydraulic actuators with mesoscale channels based on a different class of ultrahigh-power density dynamic dielectric elastomer actuators. The dynamic dielectric elastomer actuators (DEAs) are actuated at 500 Hz or above. These DEAs generate 300% higher blocked force compared with the dynamic DEAs in previous works and their loaded power density reaches 290 W⋅kg −1 at operating conditions. The soft valves are developed with compact (7 mm tall) and lightweight (0.35 g) dynamic DEAs, and they allow effective control of up to 51 kPa of pressure and a 40 mL⋅min −1 flow rate with a response time less than 0.1 s. The valves can also tune flow rates based on their driving voltages. Using the DEA soft valves, we demonstrate control of hydraulic actuators of different volumes and achieve independent control of multiple actuators powered by a single pressure source. This compact and lightweight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future onboard motion control of soft fluid-driven robots. 
    more » « less
  4. null (Ed.)
    Continuum robots have high degrees of freedom and the ability to safely move in constrained environments. One class of soft continuum robot is the “vine” robot. This type of robot extends from its tip by everting or unfurling new material, driven by internal body pressure. Most vine robot examples store new body material in a reel at their base, passing it through the core of the robot to the tip, and like many continuum robots, steer by selectively lengthening or shortening one side of the body. While this approach to steering and material storage lends itself to a fully soft device, it has three key limitations: (i) internal friction of material passing through the core of the robot limits its length in tortuous paths, (ii) body buckling as the robot's body material is re-spooled at the base can prevent retraction, and (iii) constant curvature steering limits the robot's poses and object approach angles in a given workspace. This letter presents a hybrid soft-rigid robotic system comprising a soft vine robot body and a rigid, mobile, internal steering-reeling mechanism (SRM); this SRM is equipped with a reel for material storage, a bending actuator for steering, and is capable of actuating the robot at any point along its length. This hybrid configuration increases reach along tortuous paths, allows retraction, and increases the workspace. We describe the motivation for the device, generate its mathematical models, present its methods of operation, and verify experimentally the models we developed and the performance improvements over previous vine robots. 
    more » « less
  5. Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments. 
    more » « less