skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Information Processing Capability of Soft Continuum Arms
Soft Continuum arms, such as trunk and tentacle robots, can be considered as the “dual” of traditional rigid-bodied robots in terms of manipulability, degrees of freedom, and compliance. Introduced two decades ago, continuum arms have not yet realized their full potential, and largely remain as laboratory curiosities. The reasons for this lag rest upon their inherent physical features such as high compliance which contribute to their complex control problems that no research has yet managed to surmount. Recently, reservoir computing has been suggested as a way to employ the body dynamics as a computational resource toward implementing compliant body control. In this paper, as a first step, we investigate the information processing capability of soft continuum arms. We apply input signals of varying amplitude and bandwidth to a soft continuum arm and generate the dynamic response for a large number of trials. These data is aggregated and used to train the readout weights to implement a reservoir computing scheme. Results demonstrate that the information processing capability varies across input signal bandwidth and amplitude. These preliminary results demonstrate that soft continuum arms have optimal bandwidth and amplitude where one can implement reservoir computing.  more » « less
Award ID(s):
1718755
PAR ID:
10109164
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
Page Range / eLocation ID:
441 to 447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multisection continuum arms offer complementary characteristics to those of traditional rigid-bodied robots. Inspired by biological appendages, such as elephant trunks and octopus arms, these robots trade rigidity for compliance and accuracy for safety and, therefore, exhibit strong potential for applications in human-occupied spaces. Prior work has demonstrated their superiority in operation in congested spaces and manipulation of irregularly shaped objects. However, they are yet to be widely applied outside laboratory spaces. One key reason is that, due to compliance, they are difficult to control. Sophisticated and numerically efficient dynamic models are a necessity to implement dynamic control. In this paper, we propose a novel numerically stable center-of-gravity-based dynamic model for variable-length multisection continuum arms. The model can accommodate continuum robots having any number of sections with varying physical dimensions. The dynamic algorithm is of O(n2) complexity, runs at 9.5 kHz, simulates six to eight times faster than real time for a three-section continuum robot, and, therefore, is ideally suited for real-time control implementations. The model accuracy is validated numerically against an integral-dynamic model proposed by the authors and experimentally for a three-section pneumatically actuated variable-length multisection continuum arm. This is the first sub-real-time dynamic model based on a smooth continuous deformation model for variable-length multisection continuum arms. 
    more » « less
  2. Herein, the cognitive capability of a simple, paper‐based Miura‐ori—using the physical reservoir computing framework—is experimentally examined to achieve different information perception tasks. The body dynamics of Miura‐ori (aka its vertices displacements), which is excited by a simple harmonic base excitation, can be exploited as the reservoir computing resource. By recording these dynamics with a high‐resolution camera and image processing program and then using linear regression for training, it is shown that the origami reservoir has sufficient computing capacity to estimate the weight and position of a payload. It can also recognize the input frequency and magnitude patterns. Furthermore, multitasking is achievable by simultaneously applying two targeted functions to the same reservoir state matrix. Therefore, it is demonstrated that Miura‐ori can assess the dynamic interactions between its body and ambient environment to extract meaningful information—an intelligent behavior in the mechanical domain. Given that Miura‐ori has been widely used to construct deployable structures, lightweight materials, and compliant robots, enabling such information perception tasks can add a new dimension to the functionality of such a versatile structure. 
    more » « less
  3. Abstract Often, fluidic soft robots are driven by large pneumatic or low-bandwidth hydraulic systems which struggle to meet performance objectives. This research presents the design of two morphologies of compact, positive displacement hydraulic pumps designed to act as power supplies for fluidic soft robots. These hydraulic pumps were designed to leverage additive manufacturing technology, creating cost-effective, yet volumetrically powerful units. The operational bandwidth of these pumps (> 10Hz) was substantially higher than the natural frequency of most elastomer-based soft robots (1–5Hz), allowing high control authority. These designs allow for highly scalable pumps, with performance documented in the paper. Due to the 3D printed nature of the pump components, manufacture cost is greatly reduced when compared to machined components. Each was tested driving various soft robotic actuators, demonstrating high-bandwidth, yet precise operation. With their minimal size, these pumps are candidates for un-tethered mobile soft robots, and their low weight and low noise allows them to be carried on the body for robotic actuators used in mobility rehabilitation. 
    more » « less
  4. Soft robot serial chain manipulators with the capability for growth, stiffness control, and discrete joints have the potential to approach the dexterity of traditional robot arms, while improving safety, lowering cost, and providing an increased workspace, with potential application in home environments. This paper presents an approach for design optimization of such robots to reach specified targets while minimizing the number of discrete joints and thus construction and actuation costs. We define a maximum number of allowable joints, as well as hardware constraints imposed by the materials and actuation available for soft growing robots, and we formulate and solve an optimization problem to output a planar robot design, i.e., the total number of potential joints and their locations along the robot body, which reaches all the desired targets, avoids known obstacles, and maximizes the workspace. We demonstrate a process to rapidly construct the resulting soft growing robot design. Finally, we use our algorithm to evaluate the ability of this design to reach new targets and demonstrate the algorithm's utility as a design tool to explore robot capabilities given various constraints and objectives. 
    more » « less
  5. null (Ed.)
    In the field of soft robotics, harnessing the nonlinear dynamics of soft and compliant bodies as a computational resource to enable embodied intelligence and control is known as morphological computation. Physical reservoir computing (PRC) is a true instance of morphological computation wherein; a physical nonlinear dynamic system is used as a fixed reservoir to perform complex computational tasks. These dynamic reservoirs can be used to approximate nonlinear dynamical systems and even perform machine learning tasks. By numerical simulation, this study illustrates that an origami meta-material can also be used as a dynamic reservoir for pattern generation, output modulation, and input sensing. These results could pave the way for intelligently designed origami-based robots that interact with the environment through a distributed network of sensors and actuators. This embodied intelligence will enable the next generations of soft robots to autonomously coordinate and modulate their activities, such as locomotion gait generation and limb manipulation while resisting external disturbances. 
    more » « less