skip to main content


Title: Improving In-Stream Nutrient Routines in Water Quality Models Using Stable Isotope Tracers: A Review and Synthesis
Abstract. Water quality models serve as an economically feasible alternative to quantify fluxes of nutrient pollution and to simulate effective mitigation strategies; however, their applicability is often questioned due to broad uncertainties in model structure and parameterization, leading to uncertain outputs. We argue that reduction of uncertainty is partially achieved by integrating stable isotope data streams within the water quality model architecture. This article outlines the use of stable isotopes as a response variable within water quality models to improve the model boundary conditions associated with nutrient source provenance, constrain model parameterization, and elucidate shortcomings in the model structure. To assist researchers in future modeling efforts, we provide an overview of stable isotope theory; review isotopic signatures and applications for relevant carbon, nitrogen, and phosphorus pools; identify biotic and abiotic processes that impact isotope transfer between pools; review existing models that have incorporated stable isotope signatures; and highlight recommendations based on synthesis of existing knowledge. Broadly, we find existing applications that use isotopes have high efficacy for reducing water quality model uncertainty. We make recommendations toward the future use of sediment stable isotope signatures, given their integrative capacity and practical analytical process. We also detail a method to incorporate stable isotopes into multi-objective modeling frameworks. Finally, we encourage watershed modelers to work closely with isotope geochemists to ensure proper integration of stable isotopes into in-stream nutrient fate and transport routines in water quality models. Keywords: Isotopes, Nutrients, Uncertainty analysis, Water quality modeling, Watershed.  more » « less
Award ID(s):
1632888
NSF-PAR ID:
10057572
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transactions of the ASABE
Volume:
61
Issue:
1
ISSN:
2151-0040
Page Range / eLocation ID:
139 to 157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hydrologic cycle is a fundamental component of the climate system with critical societal and ecological relevance. Yet gaps persist in our understanding of water fluxes and their response to increased greenhouse gas forcing. The stable isotope ratios of oxygen and hydrogen in water provide a unique opportunity to evaluate hydrological processes and investigate their role in the variability of the climate system and its sensitivity to change. Water isotopes also form the basis of many paleoclimate proxies in a variety of archives, including ice cores, lake and marine sediments, corals, and speleothems. These records hold most of the available information about past hydrologic variability prior to instrumental observations. Water isotopes thus provide a ‘common currency’ that links paleoclimate archives to modern observations, allowing us to evaluate hydrologic processes and their effects on climate variability on a wide range of time and length scales. Building on previous literature summarizing advancements in water isotopic measurements and modeling and describe water isotopic applications for understanding hydrological processes, this topical review reflects on new insights about climate variability from isotopic studies. We highlight new work and opportunities to enhance our understanding and predictive skill and offer a set of recommendations to advance observational and model-based tools for climate research. Finally, we highlight opportunities to better constrain climate sensitivity and identify anthropogenically-driven hydrologic changes within the inherently noisy background of natural climate variability.

     
    more » « less
  2. Abstract

    Biological productivity in the ocean directly influences the partitioning of carbon between the atmosphere and ocean interior. Through this carbon cycle feedback, changing ocean productivity has long been hypothesized as a key pathway for modulating past atmospheric carbon dioxide levels and hence global climate. Because phytoplankton preferentially assimilate the light isotopes of carbon and the major nutrients nitrate and silicic acid, stable isotopes of carbon (C), nitrogen (N), and silicon (Si) in seawater and marine sediments can inform on ocean carbon and nutrient cycling, and by extension the relationship with biological productivity and global climate. Here, we compile water column C, N, and Si stable isotopes from GEOTRACES‐era data in four key ocean regions to review geochemical proxies of oceanic carbon and nutrient cycling based on the C, N, and Si isotopic composition of marine sediments. External sources and sinks as well as internal cycling (including assimilation, particulate matter export, and regeneration) are discussed as likely drivers of observed C, N, and Si isotope distributions in the ocean. The potential for C, N, and Si isotope measurements in sedimentary archives to record aspects of past ocean C and nutrient cycling is evaluated, along with key uncertainties and limitations associated with each proxy. Constraints on ocean C and nutrient cycling during late Quaternary glacial‐interglacial cycles and over the Cenozoic are examined. This review highlights opportunities for future research using multielement stable isotope proxy applications and emphasizes the importance of such applications to reconstructing past changes in the oceans and climate system.

     
    more » « less
  3. Abstract

    By utilizing functional relationships based on observations at plot or field scales, water quality models first compute surface runoff and then use it as the primary governing variable to estimate sediment and nutrient transport. When these models are applied at watershed scales, this serial model structure, coupling a surface runoff sub‐model with a water quality sub‐model, may be inappropriate because dominant hydrological processes differ among scales. A parallel modeling approach is proposed to evaluate how best to combine dominant hydrological processes for predicting water quality at watershed scales. In the parallel scheme, dominant variables of water quality models are identified based entirely on their statistical significance using time series analysis. Four surface runoff models of different model complexity were assessed using both the serial and parallel approaches to quantify the uncertainty on forcing variables used to predict water quality. The eight alternative model structures were tested against a 25‐year high‐resolution data set of streamflow, suspended sediment discharge, and phosphorous discharge at weekly time steps. Models using the parallel approach consistently performed better than serial‐based models, by having less error in predictions of watershed scale streamflow, sediment and phosphorus, which suggests model structures of water quantity and quality models at watershed scales should be reformulated by incorporating the dominant variables. The implication is that hydrological models should be constructed in a way that avoids stacking one sub‐model with one set of scale assumptions onto the front end of another sub‐model with a different set of scale assumptions.

     
    more » « less
  4. Abstract Purpose The equilibrium sediment exchange process is defined as instantaneous deposition of suspended sediment to the streambed countered by equal erosion of sediment from the streambed. Equilibrium exchange has rarely been included in sediment transport studies but is needed when the sediment continuum is used to investigate the earth’s critical zone. Materials and methods Numericalmodeling in the watershed uplands and streamcorridor simulates sediment yield and sediment source partitioning for the Upper South Elkhorn watershed in Kentucky, USA.We simulate equilibrium exchange when uplandderived sediment simultaneously deposits to the streambed while streambed sediments erode. Sediment fingerprinting with stable carbon isotopes allowed constraint of the process in a gently rolling watershed. Results and discussion Carbon isotopes work well to partition upland sediment versus streambed sediment because sediment deposited in the streambed accrues a unique autotrophic, i.e., algal, fingerprint. Stable nitrogen isotopes do not work well to partition the sources in this study because the nitrogen isotope fingerprint of algae falls in the middle of the nitrogen isotope fingerprint of upland sediment. The source of sediment depends on flow intensity for the gently rolling watershed. Streambed sediments dominate the fluvial load for low and moderate events, while upland sediments become increasingly important during high flows and extreme events.We used sediment fingerprinting results to calibrate the equilibrium sediment exchange rate in the watershed sediment transport model. Conclusions Our sediment fingerprinting and modeling evidence suggest equilibrium sediment exchange is a substantial process occurring in the system studied. The process does not change the sediment load or streambed sediment storage but does impact the quality of sediment residing in the streambed. Therefore, we suggest equilibrium sediment exchange should be considered when the sediment continuumis used to investigate the critical zone.We conclude the paper by outlining future research priorities for coupling sediment fingerprinting with watershed modeling. 
    more » « less
  5. Abstract

    Land use change and agricultural intensification have increased food production but at the cost of polluting surface and groundwater. Best management practices implemented to improve water quality have met with limited success. Such lack of success is increasingly attributed to legacy nutrient stores in the subsurface that may act as sources after reduction of external inputs. However, current water‐quality models lack a framework to capture these legacy effects. Here we have modified the SWAT (Soil Water Assessment Tool) model to capture the effects of nitrogen (N) legacies on water quality under multiple land‐management scenarios. Our new SWAT‐LAG model includes (1) a modified carbon‐nitrogen cycling module to capture the dynamics of soil N accumulation, and (2) a groundwater travel time distribution module to capture a range of subsurface travel times. Using a 502‐km2Iowa watershed as a case study, we found that between 1950 and 2016, 25% of the total watershed N surplus (N Deposition + Fertilizer + Manure + N Fixation − Crop N uptake) had accumulated within the root zone, 14% had accumulated in groundwater, while 27% was lost as riverine output, and 34% was denitrified. In future scenarios, a 100% reduction in fertilizer application led to a 79% reduction in stream N load, but the SWAT‐LAG results suggest that it would take 84 years to achieve this reduction, in contrast to the 2 years predicted in the original SWAT model. The framework proposed here constitutes a first step toward modifying a widely used modeling approach to assess the effects of legacy N on the time required to achieve water‐quality goals.

     
    more » « less