skip to main content


Title: A Novel Architecture for Ultra-High Signal-to-Interference-Noise-Ratio Reception in Visible Light Communication
Theoretical models estimate visible light communication (VLC) data capacity to be of the order of Tera-bits-per-second (Tbps). However, practical limitations in receiver designs have limited state-of-the-art VLC prototypes to (multiple) orders of magnitude lower data rates. This paper explores a new architecture to realize ultra-high data rates in visible light communication systems by dramatically improving the Signal-to-Interference-Noise-Ratio (SINR) at the receiver. The key idea is to leverage the fast sampling rates of photodiode receivers and integrate a shutter mechanism that filters noise and interference thus creating a high-speed imaging receiver effect. Through adaptive selection of the exact receiver area over which the transmitted light is detected, the SINR can be dramatically increased yet not compromising the high sampling rate achievable using state-of-the-art photoreceptors. In addition to introducing the new hybrid architecture for high SINR reception, in this paper, we study the feasibility of noise and interference reduction through a proof-of-concept experimentation.  more » « less
Award ID(s):
1755925
NSF-PAR ID:
10097427
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
11th International Conference on Communication Systems & Networks (COMSNETS)
Page Range / eLocation ID:
172 to 179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The directionality of optical signals provides an opportunity for efficient space reuse of optical links in visible light communication (VLC). Space reuse in VLC can enable multiple-access communication from multiple light emitting transmitters. Traditional VLC system design using photo-receptors requires at least one receiving photodetector element for each light emitter, thus constraining VLC to always require a light-emitter to light-receptor element pair. In this paper, we propose, design and evaluate a novel architecture for VLC that can enable multiple-access reception using a photoreceptor receiver that uses only a single photodiode. The novel design includes a liquid-crystal-display (LCD) based shutter system that can be automated to control and enable selective reception of light beams from multiple transmitters. We evaluate the feasibility of multiple access on a single photodiode from two light emitting diode (LED) transmitters and the performance of the communication link using bit-error-rate (BER) and packet-error-rate (PER) metrics. Our experiment and trace based evaluation through proof-of-concept implementation reveals the feasibility of multiple LED reception on a single photodiode. We further evaluate the system in controlled mobile settings to verify the adaptability of the receiver when the LED transmitter changes position. 
    more » « less
  2. Optical camera communication is an emerging technology that enables communication using light beams, where information is modulated through optical transmissions from light-emitting diodes (LEDs). This work conducts empirical studies to identify the feasibility and effectiveness of using deep learning models to improve signal reception in camera communication. The key contributions of this work include the investigation of transfer learning and customization of existing models to demodulate the signals transmitted using a single LED by applying the classification models on the camera frames at the receiver. In addition to investigating deep learning methods for demodulating a single VLC transmission, this work evaluates two real-world use-cases for the integration of deep learning in visual multiple-input multiple-output (MIMO), where transmissions from a LED array are decoded on a camera receiver. This paper presents the empirical evaluation of state-of-the-art deep neural network (DNN) architectures that are traditionally used for computer vision applications for camera communication. 
    more » « less
  3. Underwater acoustic communications provide promising solutions for remote and real-time aquatic exploration and monitoring. However, the underwater environment is rich in various kinds of interferences. Those interferences could severely degrade the acoustic communication performance. This work tackles interference cancellation in a single-carrier modulated communication system. Based on the Nyqusit sampling theorem, the interference is parameterized by a finite number of unknown parameters. The Page test is applied to detect the presence of an interfering waveform in the received signal. An iterative receiver is developed, which iteratively performs the interference estimation/cancellation and traditional receiver processing. The proposed receiver is evaluated when the communication waveform is interfered by the ice-cracking impulsive noise and the sonar signal collected from the Arctic. The data processing results reveal that the proposed receiver achieves considerable decoding performance improvement through the iterative interference estimation and cancellation. 
    more » « less
  4. null (Ed.)
    Future healthcare systems require smart hospitals with system-wide wireless communications and positioning functions, which cannot be facilitated by existing radio-frequency (RF) wireless technologies. In this paper, we present integrated design of a novel low-complexity received signal strength (RSS) based hybrid visible light communication (VLC) and indoor positioning (VLP) system. This VLC/VLP tracking system consist of host optical transceivers embedded in existing light-emitting diode (LED) bulbs and user-end optical tags, which interface with the existing 120AVC power wiring in a building. The new hybrid VLC/PLC tracking system was validated by simulation and experimentation. This LED VLC tracking system will enable smart hospital operations to modernize next-generation intelligent healthcare systems 
    more » « less
  5. The increasing use of light emitting diodes (LED) and light receptors such as photodiodes and cameras in vehicles motivates the use of visible light communication (VLC) for inter–vehicular networking. However, the mobility of the vehicles presents a fundamental impediment for high throughput and link sustenance in vehicular VLC. While prior work has explored vehicular VLC system design, yet, there is no clear understanding on the amount of motion of vehicles in real world vehicular VLC use–case scenarios. To address this knowledge gap, in this paper, we present a mobility characterization study through extensive experiments in real world driving scenarios. We characterize motion using a constantly illuminated transmitter on a lead vehicle and a multi–camera setup on a following vehicle. The observations from our experiments reveal key insights on the degree of relative motion of a vehicle along its spatial axis and different vehicular motion behaviors. The motion characterization from this work lays a stepping stone to addressing mobility in vehicular VLC. 
    more » « less