skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reducing Soil Permeability Using In Situ Biofilm-Forming Bacteria: Overcoming Testing Apparatus Challenges
Growing biofilm in saturated sand has been shown to reduce the permeability of soil by one or more orders of magnitude and may be a viable approach to reducing seepage in the field; however, obtaining laboratory permeability results in soil samples where biofilm is being developed is difficult. Adding nutrients results in the formation of biofilm in the soil but also the formation of biofilm in the piping and other areas of the permeability testing apparatus. In addition, some bacteria produce gas as a product of metabolism and this gas can collect in the apparatus and interfere with fluid flow. This paper presents an approach to permeability testing that effectively minimized the growth of biofilm and the collection of gas in the testing apparatus for multiple sand samples treated with a nutrient solution over a period of more than 60 days.  more » « less
Award ID(s):
1632963
PAR ID:
10097428
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geo-Congress 2019
Page Range / eLocation ID:
187 to 195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The dynamic properties of a clean sand under different degrees of saturation is investigated using a modified custom built Direct Simple Shear (DSS) apparatus at the University of New Hampshire. The specific characteristics of the DSS are presented and the testing procedures are discussed. The device utilizes the axis translation and tensiometric techniques to control the matric suction in the soil specimen. The investigation on F75 Ottawa Sand shows a decrease in shear modulus and an increase in damping by increasing the shear strain over the tested range of strains for various degrees of saturation; dry, saturated, and partially saturated. The modulus reduction in the applied range of medium shear strains regardless of the degree of saturation demonstrates the capability of the DSS in consistently capturing the changes of dynamic properties. Experimental results indicate that the matric suction can have a substantial effect on the stiffness of the soil. However, the extent of this effect may depend on the induced strain level the effective stress in unsaturated soil. In addition, partially saturated specimens resulted in lower dynamic compression. 
    more » « less
  2. Permeability of binary mixtures of soils is important for several industrial and engineering applications. Previous models for predicting the permeability of a binary mixture of soils were primarily developed from Kozeny–Carman equation with an empirical approach. The permeability is predicted based on an equivalent particle size of the two species. This study is aimed to develop a model using a more fundamental approach. Instead of an equivalent particle size, the permeability is predicted based on the bimodal void sizes of the binary mixture. Because the bimodal void sizes are not available as commonly measured physical properties. We first develop an analytical method that has the capability of predicting the bimodal void sizes of a binary mixture. A permeability model is then developed based on the bimodal void sizes of the binary mixture. The developed permeability model is evaluated by comparing the predicted and experimentally measured results for binary mixtures of glass beads, crush sand, and gravel sand. The findings can contribute to a better understanding of the important influence of pore structure on the prediction of permeability. 
    more » « less
  3. The exact heat transfer mechanism in the soil media can be understood by analyzing the soil behavior surrounding the heat sources. In literature, heat conduction has been considered as a main heat transfer mechanism in soil, and less attention has been given to the natural heat convection in saturated soils. There is only limited research in the literature which shows the presence of thermally induced pore fluid flow in soil media. It has been observed that heat convection through pore fluid flow in sand facilitates heat transfer in the ground. Therefore, both heat conduction and heat convection must be considered to accurately model the heat transfer mechanism in soil. In this paper, the presence of natural convection of water in a 2D axisymmetric domain of soil with a vertical heat source has been numerically investigated in steady-state condition. The soil thermal response and heat transfer mechanism for different soil types are compared. Feasibility of thermally-induced pore fluid flow is analyzed for different soil types. The results determine the presence of thermally driven pore fluid flow in high permeability soil (e.g., coarse sand) and confirm that the effect of heat convection in low permeability silt and clay is negligible. 
    more » « less
  4. Abstract AimsThe goal of this study was to explore the suitability of recycled glass sand for the growth of beach-adapted plant species given the potential environmental benefits of utilizing glass sand for beach and dune restoration in the face of dwindling natural sand resources. MethodsWe grew three species native to US Gulf of Mexico beaches (Ipomoea imperati(Vahl) Griseb.,I. pes-caprae(L.) R.Br., andUniola paniculata(L.)) in three greenhouse experiments in glass sand, beach sand, or mixtures. First, we investigated nutrient and microbial effects by growing each species in pure glass sand, beach sand, and 80%/20% mixtures of glass sand/beach sand. Second, we comparedU. paniculatagrowth in glass sand mixed with 100%, 75%, 50%, 25%, or 0% beach sand. These experiments included fertilizer and microbial sterilization treatments. Third, we investigated soil permeability effects by comparing growth of all species using different grain sizes of glass sand. ResultsOverall, plants produced significantly more biomass in beach sand than in glass sand, and the effect was more pronounced with the fertilizer treatment. There were significant effects of substrate mixtures and interactions with fertilizer treatments onUniolabiomass. Further, when glass sand grain sizes were manipulated, plant biomass was equal or higher in the coarsest glass sand compared to beach sand. ConclusionsOur results demonstrate that beach-adapted plants can grow in glass sand and suggest that recycled glass sand is a potential resource for ecological restoration with incorporation of soil amendments such as fertilizer and utilization of selected grain sizes. 
    more » « less
  5. Viana da Fonseca, António; Ferreira, Cristiana (Ed.)
    Microbially induced carbonate precipitation (MICP) is a bio-mediated ground improvement technique that can increase soil stiffness and produce cohesion within granular material. Most experimental investigations on MICP-treated soils are performed on idealized granular materials. Evaluating a narrow range of particle sizes dismisses the potential influence of soil fabric on MICP treatment efficiency. Therefore, little is known regarding the influence of soil fabric on the level of improvement achievable post-MICP treatment. We investigate the influence of the coefficient of uniformity (Cu) on the level of improvement that can be obtained from MICP treatment. This study couples unconfined compression testing with microscale observations obtained from x-ray computed tomography (CT) of two sand mixtures with different Cu values. A soil column and CT specimen of each sand mixture were prepared and received the same number of MICP- injections. The shear wave velocity (Vs) of the soil columns was monitored to evaluate the increase in soil stiffness over time. After MICP treatment, the bio-cemented columns were subjected to unconfined compressive strength testing. Results indicate that for a similar mass of carbonate, the soil with a larger Cu experienced a greater increase in Vs but a lower maximum unconfined compressive strength. Through CT imaging, the soil with a smaller Cu was observed to have a more uniform distribution of carbonate within the sand matrix whereas the soil with a larger Cu has more sporadic MICP trends. This study elucidates the influence of soil fabric on the level of improvement that can be achieved through MICP treatment and assesses the reliability of x-ray CT scanning of MICP-treated sands with moderate carbonate content. 
    more » « less