skip to main content


This content will become publicly available on September 3, 2024

Title: Influence of the coefficient of uniformity on bio-cemented sands: a microscale investigation
Microbially induced carbonate precipitation (MICP) is a bio-mediated ground improvement technique that can increase soil stiffness and produce cohesion within granular material. Most experimental investigations on MICP-treated soils are performed on idealized granular materials. Evaluating a narrow range of particle sizes dismisses the potential influence of soil fabric on MICP treatment efficiency. Therefore, little is known regarding the influence of soil fabric on the level of improvement achievable post-MICP treatment. We investigate the influence of the coefficient of uniformity (Cu) on the level of improvement that can be obtained from MICP treatment. This study couples unconfined compression testing with microscale observations obtained from x-ray computed tomography (CT) of two sand mixtures with different Cu values. A soil column and CT specimen of each sand mixture were prepared and received the same number of MICP- injections. The shear wave velocity (Vs) of the soil columns was monitored to evaluate the increase in soil stiffness over time. After MICP treatment, the bio-cemented columns were subjected to unconfined compressive strength testing. Results indicate that for a similar mass of carbonate, the soil with a larger Cu experienced a greater increase in Vs but a lower maximum unconfined compressive strength. Through CT imaging, the soil with a smaller Cu was observed to have a more uniform distribution of carbonate within the sand matrix whereas the soil with a larger Cu has more sporadic MICP trends. This study elucidates the influence of soil fabric on the level of improvement that can be achieved through MICP treatment and assesses the reliability of x-ray CT scanning of MICP-treated sands with moderate carbonate content.  more » « less
Award ID(s):
1934844
NSF-PAR ID:
10451382
Author(s) / Creator(s):
;
Editor(s):
Viana da Fonseca, António; Ferreira, Cristiana
Date Published:
Journal Name:
Proceedings of the 8th International Symposium on DEFORMATION CHARACTERISTICS OF GEOMATERIALS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerous laboratory studies in the past decade have demonstrated the ability of microbially induced calcite precipitation (MICP), a bio-mediated soil improvement method, to favorably transform a soil’s engineering properties including increased shear strength and stiffness with reductions in hydraulic conductivity and porosity. Despite significant advances in treatment application techniques and characterization of post-treatment engineering properties, relationships between biogeochemical conditions during precipitation and post-treatment material properties have remained poorly understood. Bacterial augmentation, stimulation, and cementation treatments can vary dramatically in their chemical constituents, concentrations, and ratios between researchers, with specific formulas oftentimes perpetuating despite limited understanding of their engineering implications. In this study, small-scale batch experiments were used to systematically investigate how biogeochemical conditions during precipitate synthesis may influence resulting bio-cementation and related material engineering behaviors. Aqueous solution chemistry was monitored in time to better understand the relationship between the kinetics of ureolysis and calcium carbonate precipitation, and resulting precipitates. Following all experiments, precipitates were evaluated using x-ray diffraction and scanning electron microscopy to characterize mineralogy and morphology. Results obtained from these investigations are expected to help identify the primary chemical and biological factors during synthesis that may control bio-cementation material properties and 
    more » « less
  2. Abstract

    Specimens of silica sand treated via enzyme induced carbonate precipitation (EICP) showed surprisingly high strength at a relatively low carbonate content when non-fat powdered milk was included in the treatment solution. EICP is a biologically-based soil improvement technique that uses free urease enzyme to catalyze the hydrolysis of urea in an aqueous solution, producing carbonate ions and alkalinity that in the presence of calcium cations leads to precipitation of calcium carbonate. The strength achieved at less than 1.4% carbonate content via a single cycle of treatment was unprecedented compared to results reported in the literature from both EICP and microbially induced carbonate precipitation (MICP). Scanning electron microscope images show that in the specimens treated with the solution containing powdered milk the carbonate precipitate was concentrated at interparticle contacts. The impact of these results include reductions in the concentration of substrate and enzyme required to achieve a target compressive strength, reduction in the undesirable ammonium chloride by-product, and, depending on the desired strength, reduction in the number of cycles of EICP treatment. These advantages enhance the potential for development of a sustainable method of soil improvement via hydrolysis of urea.

     
    more » « less
  3. Tang, Qiang (Ed.)
    As an environmentally friendly technology, microbially induced calcite precipitation (MICP) is widely used to improve the engineering properties of soil. The goal of this study was to investigate the effect of rainfall-induced erosion on the stability of sandy slopes which were treated by MICP technology. The observation of the erosion pattern of low concentration (0.25 M Ca) and high concentration (0.5 M Ca) of MICP-treated slopes, the mechanical behaviors of MICP-treated and cement-treated samples, and the effects of rainfall-induced erosion on the roughness of 0.5 M Ca MICP-treated and 10% cement-treated slope were studied through visual observation, unconfined compressive tests, and roughness tests. For the 0.25 M Ca MICP-treated sample, surface erosion was found to occur soon after the start of the rainfall erosion test, while for the 0.5 M Ca MICP-treated sample, the slope surface remained intact after exposing to the rainfall for 24 hours. Through unconfined compressive tests, it can be concluded that the 0.5 M Ca MICP treatment achieved a high strength, which was similar to 10% cement-treated sand. The roughness test results showed that the surface of 0.5 M Ca MICP-treated slope looked smoother than the uneroded surface after 24-h rainfall-induced erosion. On the contrary, the surface of the 10% cement-treated slope became rougher after 24-h rainfall-induced erosion. These results indicated that the MICP-treated sandy slope had lower resistance against rainfall-induced erosion compared to the cement-treated sandy slope. 
    more » « less
  4. Abstract

    Microbially-induced calcium carbonate precipitation (MICP) is a bio-cementation process that can improve the engineering properties of granular soils through the precipitation of calcium carbonate (CaCO3) minerals on soil particle surfaces and contacts. The technology has advanced rapidly as an environmentally conscious soil improvement method, however, our understanding of the effect of changes in field-representative environmental conditions on the physical and chemical properties of resulting precipitates has remained limited. An improved understanding of the effect of subsurface geochemical and soil conditions on process reaction kinetics and the morphology and mineralogy of bio-cementation may be critical towards enabling successful field-scale deployment of the technology and improving our understanding of the long-term chemical permanence of bio-cemented soils in different environments. In this study, thirty-five batch experiments were performed to specifically investigate the influence of seawater ions and varying soil materials on the mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation. During experiments, differences in reaction kinetics were quantified to identify conditions inhibiting CaCO3precipitation and ureolysis. Following experiments, scanning electron microscopy, x-ray diffraction, and chemical composition analyses were employed to quantify differences in mineralogical compositions and material morphology. Ions present in seawater and variations in soil materials were shown to significantly influence ureolytic activity and precipitate mineralogy and morphology, however, calcite remained the predominant CaCO3polymorph in all experiments with relative percentages exceeding 80% by mass in all precipitates.

     
    more » « less
  5. Rice, J. ; Liu, X. ; Sasanakul, I. ; McIlroy, M. ; Xiao, M. (Ed.)
    Coastal dunes often present the first line of defense for the built environment during extreme wave surge and storm events. In order to protect inland infrastructure, dunes must resist erosion in the face of these incidents. Microbial induced carbonate precipitation (MICP), or more commonly bio-cementation, can be used to increase the critical shear strength of sand and mitigate erosion. To evaluate the performance of bio-cemented dunes, prototypical dunes consisting of clean poorly graded sand collected from the Oregon coast were constructed within the Large Wave Flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. The bio-cementation treatment was sprayed onto the surface of the unsaturated dune. The level of cementation was monitored using shear wave velocity measurements throughout the duration of the treatments. The treated and control dunes were subjected to 19 trials of approximately 300 waves each, with each trial increasing in water depth, wave height, and wave period. The performance of the dune was evaluated using lidar scans between each wave trial. The results indicate that the surface spraying treatment technique produced consistent levels of bio-cementation throughout the treated length of the dune and demonstrated significant resistance to erosion from the wave trails. 
    more » « less