skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Topology Techniques for Characterizing Time-Series Data
opological data analysis (TDA), while abstract, allows a characterization of time-series data obtained from nonlinear and complex dynamical systems. Though it is surprising that such an abstract measure of structure—counting pieces and holes—could be useful for real-world data, TDA lets us compare different systems, and even do membership testing or change-point detection. However, TDA is computationally expensive and involves a number of free parameters. This complexity can be obviated by coarse-graining, using a construct called the witness complex. The parametric dependence gives rise to the concept of persistent homology: how shape changes with scale. Its results allow us to distinguish time-series data from different systems—e.g., the same note played on different musical instruments.  more » « less
Award ID(s):
1537460
PAR ID:
10097599
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in Intelligent Data Analysis XVI. IDA 2017
Volume:
10584
Page Range / eLocation ID:
284-296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Topological data analysis (TDA) combines concepts from algebraic topology, machine learning, statistics, and data science which allow us to study data in terms of their latent shape properties. Despite the use of TDA in a broad range of applications, from neuroscience to power systems to finance, the utility of TDA in Earth science applications is yet untapped. The current study aims to offer a new approach for analyzing multi-resolution Earth science datasets using the concept of data shape and associated intrinsic topological data characteristics. In particular, we develop a new topological approach to quantitatively compare two maps of geophysical variables at different spatial resolutions. We illustrate the proposed methodology by applying TDA to aerosol optical depth (AOD) datasets from the Goddard Earth Observing System, Version 5 (GEOS-5) model over the Middle East. Our results show that, contrary to the existing approaches, TDA allows for systematic and reliable comparison of spatial patterns from different observational and model datasets without regridding the datasets into common grids. 
    more » « less
  2. Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application’s focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects. 
    more » « less
  3. We present a novel method for identifying topological features of chromatin domains in live cells using single-particle tracking and topological data analysis (TDA). By applying TDA to particle trajectories, we can effectively detect complex spatial patterns, such as loops, that are often missed by traditional time series analysis. Using simulations of polymer bead–spring chains, we have validated the accuracy of our method and determined its limitations for detecting loops. Our approach offers a promising avenue for exploring the topological complexity of chromatin in living cells using TDA techniques. 
    more » « less
  4. Abstract Shape is data and data is shape. Biologists are accustomed to thinking about how the shape of biomolecules, cells, tissues, and organisms arise from the effects of genetics, development, and the environment. Less often do we consider that data itself has shape and structure, or that it is possible to measure the shape of data and analyze it. Here, we review applications of topological data analysis (TDA) to biology in a way accessible to biologists and applied mathematicians alike. TDA uses principles from algebraic topology to comprehensively measure shape in data sets. Using a function that relates the similarity of data points to each other, we can monitor the evolution of topological features—connected components, loops, and voids. This evolution, a topological signature, concisely summarizes large, complex data sets. We first provide a TDA primer for biologists before exploring the use of TDA across biological sub‐disciplines, spanning structural biology, molecular biology, evolution, and development. We end by comparing and contrasting different TDA approaches and the potential for their use in biology. The vision of TDA, that data are shape and shape is data, will be relevant as biology transitions into a data‐driven era where the meaningful interpretation of large data sets is a limiting factor. 
    more » « less
  5. This work presents a framework for studying temporal networks using zigzag persistence, a tool from the field of Topological Data Analysis (TDA). The resulting approach is general and applicable to a wide variety of time-varying graphs. For example, these graphs may correspond to a system modeled as a network with edges whose weights are functions of time, or they may represent a time series of a complex dynamical system. We use simplicial complexes to represent snapshots of the temporal networks that can then be analyzed using zigzag persistence. We show two applications of our method to dynamic networks: an analysis of commuting trends on multiple temporal scales, e.g., daily and weekly, in the Great Britain transportation network, and the detection of periodic/chaotic transitions due to intermittency in dynamical systems represented by temporal ordinal partition networks. Our findings show that the resulting zero- and one-dimensional zigzag persistence diagrams can detect changes in the networks’ shapes that are missed by traditional connectivity and centrality graph statistics. 
    more » « less