skip to main content

Title: Near Field Cosmology: Translating Galaxy Properties to Lyman-alpha and Lyman-continuum escape fractions
We present our analyses of 39 selected star-forming low- to intermediate-mass low-redshift galaxies from the KISSR survey. These galaxies were selected as being representative in the local volume of the kinds of early galaxies that might have hosted the first stars, and span a range of galaxy properties (EWHA, reddening, metallicity, stellar mass). The KISSR systems contain a population, in appearance resembling "purple peas", with potentially steep UV slopes and high equivalent widths in H-alpha. Using archival GALEX data and theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of these low-mass low-z KISSR galaxies to their escape fractions in Ly-alpha (LyA) and Ly-continuum (LyC) radiation, confirming a relationship between a galaxy's steep UV spectral slope and a significant (> 0.1) LyA escape fraction. This relationship is seen in existing data of low- to intermediate-mass galaxies in the local volume (please see accompanying poster by Pilon et al. at this meeting). We also translate measured LyA escape fractions in the literature for 14 LARS galaxies and a few dozen green pea galaxies to their LyC escape fractions using similar modeling. This work was supported by the University of San Francisco more » (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1637339
Publication Date:
NSF-PAR ID:
10097662
Journal Name:
American Astronomical Society, AAS Meeting
Volume:
233
Page Range or eLocation-ID:
383.05
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-mass galaxies are thought to play a large role in reionizing the Universe at redshifts, z > 6. However, due to limited UV data on low-mass galaxies, the models used to estimate the escape of radiation are poorly constrained. Using theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of a sample of low-mass low-z KISSR galaxies to their escape fraction values in Ly-alpha radiation, fesc (LyA), and in the Ly-continuum, fesc (LyC). These low-mass starforming systems have potentially steep UV slopes, and could provide a much-needed relation between easily measured spectral properties such as UV slope or LyA line properties, and the escape of LyA/LyC radiation. Such a relation could advance studies of primordial star clusters and the underlying physical conditions characterizing early galaxies, one of the target observation goals of the soon to-be-launched James Webb Space Telescope. This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.
  2. The escape of radiation from galaxies is a frontier cosmology problem with wide-ranging implications for reionization, galaxy evolution and detection strategies for high-redshift systems. Low- and intermediate-mass galaxies may have played a crucial role in reionization at early times, and by studying their analogues in the local universe, we can test models of radiation escape in galaxies that are more observationally accessible. We present here our cross-sectional analyses of the characteristics of low-redshift galaxies from surveys including KISSR, LARS, and two Green Pea galaxy samples through various computational and visualization techniques. Local systems with measured high (> 0.1) Lyman-alpha escape fractions tend to have high equivalent widths in H-alpha (EWHA) and low Lyman-alpha red-peak velocity. The KISSR systems contain a population, in appearance resembling "purple peas", with potentially steep UV slopes and high EWHA (please see accompanying poster by Olivieri Villalvazo et al. at this meeting). These might represent a population of local starforming galaxies that are more common than, e.g., Green Pea galaxies, that also have potentially high Lyman-alpha, and likely Lyman-continuum, escape. These galaxies could potentially test theoretical models and advance studies of the "first-light" galaxies anticipated from the James Webb Space Telescope through characterizing the underlying physicalmore »properties that contribute to radiation leakage. This work was supported by the University of San Francisco (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339.« less
  3. We present our results on calculations of the escape of Ly-alpha and Ly-continuum radiation from low- and intermediate-mass galaxies. Such systems may have played a crucial role in reionization at early times. We use simple analytic models for the underlying galaxy profiles and compare them with semi-analytic and numerical computations of escaping radiation from such systems. We comment on the possible range of values for the critical spectral index of the source radiation at which H and He ionization start to compete, under a variety of physical conditions. Last, we examine data of low- and intermediate-mass galaxy populations in the local volume, including strong-emission line systems like green pea galaxies and Ly-alpha emitting systems, that closely resemble the earliest halos that hosted the first stars. We share a set of observable galaxy properties that could characterize the "leakers", whose high-redshift counterparts would have had significant escape of Ly-alpha and Ly-continuum radiation. This work was supported by the University of San Francisco (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339.
  4. ABSTRACT We measure the Lyman continuum (LyC) escape fraction in 54 faint Lyman-alpha emitters (LAEs) at $z$ ≃ 3.1 in the GOODS-South field. With the average magnitude of R = 26.7 AB (MUV = −18.8 and L ≃ 0.1L*), these galaxies represent a population of compact young dwarf galaxies. Their properties are likely to resemble those in the galaxies responsible for reionizing the Universe at $z$ > 6. We do not detect LyC emission in any individual LAEs in the deep HST F336W images, which covers the rest-frame 820 Å. We do not detect the LyC emission of these LAEs in the stacked F336W images either. The 3σ upper limit of LyC escape fractions is $f_{\rm esc}\lt 14\!-\!32{{\ \rm per\ cent}}$. However, the high Ly α rest-frame equivalent width (EW), low stellar mass, and UV luminosity of these LAEs suggest that they should have $f_{\rm esc}\gt 50{{\ \rm per\ cent}}$. The low LyC escape fraction from this work and other stacking analyses suggests that the LyC-leaking galaxies with $f_{\rm esc}\gt 50{{\ \rm per\ cent}}$ at $z$ = 2–3 do not follow the relation between fesc and UV luminosity and Ly α EW derived from typical galaxies at similar redshifts. Therefore, the UV luminositymore »and Ly α EW are not the best indicators for the LyC escape fraction.« less
  5. ABSTRACT

    We report the discovery of a double-peaked Lyman-α (Ly α) emitter (LAE) at z = 3.2177 ± 0.0001 in VLT/MUSE data. The galaxy is strongly lensed by the galaxy cluster RXC J0018.5+1626 recently observed in the RELICS survey, and the double-peaked Ly α emission is clearly detected in the two counter images in the MUSE field of view. We measure a relatively high Ly α rest-frame equivalent width (EW) of EWLy α, 0 = (63 ± 2) Å. Additional spectroscopy with Gemini/GNIRS in the near-infrared (NIR) allows us to measure the H β, [O iii] λ4959 Å, and [O iii] λ5007 Å emission lines, which show moderate rest-frame EWs of the order of a few ∼10–100 Å, an [O iii] λ5007 Å/H β ratio of 4.8 ± 0.7, and a lower limit on the [O iii]/[O ii] ratio of >9.3. The galaxy has very blue UV-continuum slopes of βFUV = −2.23 ± 0.06 and βNUV = −3.0 ± 0.2, and is magnified by factors μ ∼ 7–10 in each of the two images, thus enabling a view into a low-mass ($M_{\star }\simeq 10^{7.5}\, \mathrm{M}_{\odot }$) high-redshift galaxy analogue. Notably, the blue peak of the Ly α profile is significantly stronger than the red peak, which suggests an inflow of matter and possibly very low H i column densities in its circumgalactic gas. To the best of our knowledge, this is the first detection of suchmore »a Ly α profile. Combined with the high lensing magnification and image multiplicity, these properties make this galaxy a prime candidate for follow-up observations to search for LyC emission and constrain the LyC photon escape fraction.

    « less