skip to main content


Title: Tracking the origin of photostability in purine nucleobases: the photophysics of 2-oxopurine
This work scrutinizes the relaxation mechanism of 2-oxopurine. Contrary to its ancestor, purine, which is a UVC chromophore, 2-oxopurine shows a red-shifted absorption spectrum centered in the UVA region. In 2-oxopurine, relaxation along the ππ* spectroscopic state directs the population from the Franck–Condon (FC) region towards a minimum, which acts as a crossroad for the further decay of the system either to triplet states or, alternatively, to the ground state through a C 6 -puckered S 1 /S 0 funnel. A comparison of the optical properties and excited state potential energy surfaces of purine, 2-oxopurine, 2-aminopurine, 6-oxopurine and adenine, allows establishing how the position and nature of substituent tune the photophysics of purine. For this series, we conclude that both C 2 and C 6 substitution redshift the absorption spectrum of purine, with 2-oxo substitution exhibiting the largest shift. An important exception is the canonical nucleobase adenine, which presents a blue shifted absorption spectrum. The topography of purine's ππ* potential energy surface experiences major changes when functionalized at the C 6 position. In particular, the disappearance of the minimum along the ππ* potential energy surface efficiently funnels the excited state population from the FC region to the ground state and increases the photostability of 6-aminopurine (adenine) and 6-oxopurine (hypoxanthine) nucleobases.  more » « less
Award ID(s):
1800052
NSF-PAR ID:
10097737
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photostability is thought to be an inherent property of nucleobases required to survive the extreme ultraviolet radiation conditions of the prebiotic era. Previous studies have shown that absorption of ultraviolet radiation by the canonical nucleosides results in ultrafast internal conversion to the ground state, demonstrating that these nucleosides efficiently dissipate the excess electronic energy to the environment. In recent years, studies on the photophysical and photochemical properties of nucleobase derivatives have revealed that chemical substitution influences the electronic relaxation pathways of purine and pyrimidine nucleobases. It has been suggested that amino or carbonyl substitution at the C6 position could increase the photostability of the purine derivatives more than the substitution at the C2 position. This investigation aims to elucidate the excited state dynamics of 2′-deoxyisoguanosine (dIsoGuo) and isoguanosine (IsoGuo) in aqueous solution at pH 7.4 and 1.4, which contain an amino group at the C6 position and a carbonyl group at the C2 position of the purine chromophore. The study of these derivatives is performed using absorption and emission spectroscopies, broadband transient absorption spectroscopy, and density functional and time-dependent density functional levels of theory. It is shown that the primary relaxation mechanism of dIsoGuo and IsoGuo involves nonradiative decay pathways, where the population decays from the S 1 (ππ*) state through internal conversion to the ground state via two relaxation pathways with lifetimes of hundreds of femtoseconds and less than 2 ps, making these purine nucleosides photostable in aqueous solution. 
    more » « less
  2. Ultraviolet radiation (UVR) from the sun is essential for the prebiotic syntheses of nucleotides, but it can also induce photolesions such as the cyclobutane pyrimidine dimers (CPDs) to RNA or DNA oligonucleotide in prebiotic Earth. 2,6-Diaminopurine (26DAP) has been proposed to repair CPDs in high yield under prebiotic conditions and be a key component in enhancing the photostability of higher-order prebiotic DNA structures. However, its electronic relaxation pathways have not been studied, which is necessary to know whether 26DAP could have survived the intense UV fluxes of the prebiotic Earth. We investigate the electronic relaxation mechanism of both 26DAP and its 2′-deoxyribonucleoside (26DAP-d) in aqueous solution using steady-state and femtosecond transient absorption measurements that are complemented with electronic-structure calculations. The results demonstrate that both purine derivatives are significantly photostable to UVR. It is shown that upon excitation at 287 nm, the lowest energy 1 ππ* state is initially populated. The population then branches following two relaxation coordinates in the 1 ππ* potential energy surface, which are identified as the C2- and C6-relaxation coordinates. The population following the C6-coordinate internally converts to the ground state nonradiatively through a nearly barrierless conical intersection within 0.7 ps in 26DAP or within 1.1 ps in 26DAP-d. The population that follows the C2-relaxation coordinate decays back to the ground state by a combination of nonradiative internal conversion via a conical intersection and fluorescence emission from the 1 ππ* minimum in 43 ps and 1.8 ns for the N9 and N7 tautomers of 26DAP, respectively, or in 70 ps for 26DAP-d. Fluorescence quantum yields of 0.037 and 0.008 are determined for 26DAP and 26DAP-d, respectively. Collectively, it is demonstrated that most of the excited state population in 26DAP and 26DAP-d decays back to the ground state via both nonradiative and radiative relaxation pathways. This result lends support to the idea that 26DAP could have accumulated in large enough quantities during the prebiotic era to participate in the formation of prebiotic RNA or DNA oligomers and act as a key component in the protection of the prebiotic genetic alphabet. 
    more » « less
  3. null (Ed.)
    The significance of multiple number of donor-acceptor entities on a central electron donor in a star-shaped molecular system in improving light energy harvesting ability is reported. For this, donor-acceptor-donor type conjugates comprised up to three entities ferrocenyl (Fc)-diketopyrrolopyrrole (DPP) onto a central triphenylamine (TPA), (4-6) by the Pd-catalyzed Sonogashira cross–coupling reactions have been newly synthesized and characterized. Donor-acceptor conjugates possessing diketopyrrolopyrrole (1 to 3 entities) onto the central triphenylamine, (1-3) served as reference dyads while monomeric DPP and Fc-DPP served as control compounds. Both DPP and Fc-DPP carrying conjugates exhibited red-shifted absorption compared to their respective control compounds revealing existence of ground state interactions. Furthermore, DPP fluorescence in 4-6 was found to be quantitatively quenched while for 1-3, this property varied between 73-65% suggesting occurrence moderate amounts of excited state events. The electrochemical investigations exhibited an additional low potential oxidation in the case of Fc-DPP-TPA based derivatives (4-6) owing to the presence of ferrocene unit(s). This was in addition to DPP and TPA redox peaks. Using spectral, electrochemical and computational studies, Gibbs free-energy calculations were performed to visualize excited state charge separation (GCS) in these donor-acceptor conjugates as a function of different number of Fc-DPP entities. Formation of Fc+-DPP•--TPA charge separated states (CSS) in the case of 4-6 was evident. Using spectroelectrochemical studies, spectrum of CSS was deduced. Finally, femtosecond transient absorption spectral studies were performed to gather information on excited state charge separation. Increasing the number of Fc-DPP entities in 4-6 improved charge separation rates. Surprisingly, lifetime of the charge separated state, Fc+-DPP•--TPA was found to persist longer with an increase in the number of Fc-DPP entities in 4-6 as compared to Fc-DPP-control and simple DPP derived donor-acceptor conjugates in literature. This unprecedented result has been attributed to subtle changes in GCS and GCR and the associated electron coupling between different entities. 
    more » « less
  4. Laser-induced fluorescence (LIF) excitation, dispersed fluorescence (DFL), UV–UV-hole burning, and UV-depletion spectra have been collected on methyl anthranilate (MA, methyl 2-aminobenzoate) and its water-containing complex (MA–H 2 O), under jet-cooled conditions in the gas phase. As a close structural analog of a sunscreen agent, MA has a strong absorption due to the S 0 –S 1 transition that begins in the UV-A region, with the electronic origin at 28 852 cm −1 (346.6 nm). Unlike most sunscreens that have fast non-radiative pathways back to the ground state, MA fluoresces efficiently, with an excited state lifetime of 27 ns. Relative to methyl benzoate, inter-system crossing to the triplet manifold is shut off in MA by the strong intramolecular NH⋯OC H-bond, which shifts the 3 nπ* state well above the 1 ππ* S 1 state. Single vibronic level DFL spectra are used to obtain a near-complete assignment of the vibronic structure in the excited state. Much of the vibrational structure in the excitation spectrum is Franck–Condon activity due to three in-plane vibrations that modulate the distance between the NH 2 and CO 2 Me groups, ν 33 (421 cm −1 ), ν 34 (366 cm −1 ), and ν 36 (179 cm −1 ). Based on the close correspondence between experiment and theory at the TD-DFT B3LYP-D3BJ/def2TZVP level of theory, the major structural changes associated with electronic excitation are evaluated, leading to the conclusion that the major motion is a reorientation and constriction of the 6-membered H-bonded ring closed by the intramolecular NH⋯OC H-bond. This leads to a shortening of the NH⋯OC H-bond distance from 1.926 Å to 1.723 Å, equivalent to about a 25% reduction in the H⋯O distance compared to full H-atom transfer. As a result, the excited state process near the S 1 origin is a hydrogen atom dislocation that is brought about primarily by heavy atom motion, since the shortened H-bond distance results from extensive heavy-atom motion, with only a 0.03 Å increase in the NH bond length relative to its ground state value. 
    more » « less
  5. First, high-resolution sub-Doppler infrared spectroscopic results for cyclopentyl radical (C 5 H 9 ) are reported on the α-CH stretch fundamental with suppression of spectral congestion achieved by adiabatic cooling to T rot ≈ 19(4) K in a slit jet expansion. Surprisingly, cyclopentyl radical exhibits a rotationally assignable infrared spectrum, despite 3N − 6 = 36 vibrational modes and an upper vibrational state density (ρ ≈ 40–90 #/cm −1 ) in the critical regime (ρ ≈ 100 #/cm −1 ) necessary for onset of intramolecular vibrational relaxation (IVR) dynamics. Such high-resolution data for cyclopentyl radical permit detailed fits to a rigid-rotor asymmetric top Hamiltonian, initial structural information for ground and vibrationally excited states, and opportunities for detailed comparison with theoretical predictions. Specifically, high level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T))/ANO0, 1 level are used to calculate an out-of-plane bending potential, which reveals a C 2 symmetry double minimum 1D energy surface over a C 2v transition state. The inversion barrier [V barrier ≈ 3.7(1) kcal/mol] is much larger than the effective moment of inertia for out-of-plane bending, resulting in localization of the cyclopentyl wavefunction near its C 2 symmetry equilibrium geometry and tunneling splittings for the ground state too small (<1 MHz) to be resolved under sub-Doppler slit jet conditions. The persistence of fully resolved high-resolution infrared spectroscopy for such large cyclic polyatomic radicals at high vibrational state densities suggests a “deceleration” of IVR for a cycloalkane ring topology, much as low frequency torsion/methyl rotation degrees of freedom have demonstrated a corresponding “acceleration” of IVR processes in linear hydrocarbons. 
    more » « less