skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Universal method for robust detection of circadian state from gene expression
Circadian clocks play a key role in regulating a vast array of biological processes, with significant implications for human health. Accurate assessment of physiological time using transcriptional biomarkers found in human blood can significantly improve diagnosis of circadian disorders and optimize the delivery time of therapeutic treatments. To be useful, such a test must be accurate, minimally burdensome to the patient, and readily generalizable to new data. A major obstacle in development of gene expression biomarker tests is the diversity of measurement platforms and the inherent variability of the data, often resulting in predictors that perform well in the original datasets but cannot be universally applied to new samples collected in other settings. Here, we introduce TimeSignature, an algorithm that robustly infers circadian time from gene expression. We demonstrate its application in data from three independent studies using distinct microarrays and further validate it against a new set of samples profiled by RNA-sequencing. Our results show that TimeSignature is more accurate and efficient than competing methods, estimating circadian time to within 2 h for the majority of samples. Importantly, we demonstrate that once trained on data from a single study, the resulting predictor can be universally applied to yield highly accurate results in new data from other studies independent of differences in study population, patient protocol, or assay platform without renormalizing the data or retraining. This feature is unique among expression-based predictors and addresses a major challenge in the development of generalizable, clinically useful tests.  more » « less
Award ID(s):
1764421
PAR ID:
10097767
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
39
ISSN:
0027-8424
Page Range / eLocation ID:
E9247 to E9256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abundant epidemiological evidence links circadian rhythms to human health, from heart disease to neurodegeneration. Accurate determination of an individual’s circadian phase is critical for precision diagnostics and personalized timing of therapeutic interventions. To date, however, we still lack an assay for physiological time that is accurate, minimally burdensome to the patient, and readily generalizable to new data. Here, we present TimeMachine, an algorithm to predict the human circadian phase using gene expression in peripheral blood mononuclear cells from a single blood draw. Once trained on data from a single study, we validated the trained predictor against four independent datasets with distinct experimental protocols and assay platforms, demonstrating that it can be applied generalizably. Importantly, TimeMachine predicted circadian time with a median absolute error ranging from 1.65 to 2.7 h, regardless of systematic differences in experimental protocol and assay platform, without renormalizing the data or retraining the predictor. This feature enables it to be flexibly applied to both new samples and existing data without limitations on the transcriptomic profiling technology (microarray, RNAseq). We benchmark TimeMachine against competing approaches and identify the algorithmic features that contribute to its performance. 
    more » « less
  2. null (Ed.)
    Abstract The ability to predict the efficacy of cancer treatments is a longstanding goal of precision medicine that requires improved understanding of molecular interactions with drugs and the discovery of biomarkers of drug response. Identifying genes whose expression influences drug sensitivity can help address both of these needs, elucidating the molecular pathways involved in drug efficacy and providing potential ways to predict new patients’ response to available therapies. In this study, we integrated cancer type, drug treatment, and survival data with RNA-seq gene expression data from The Cancer Genome Atlas to identify genes and gene sets whose expression levels in patient tumor biopsies are associated with drug-specific patient survival using a log-rank test comparing survival of patients with low vs. high expression for each gene. This analysis was successful in identifying thousands of such gene–drug relationships across 20 drugs in 14 cancers, several of which have been previously implicated in the respective drug’s efficacy. We then clustered significant genes based on their expression patterns across patients and defined gene sets that are more robust predictors of patient outcome, many of which were significantly enriched for target genes of one or more transcription factors, indicating several upstream regulatory mechanisms that may be involved in drug efficacy. We identified a large number of genes and gene sets that were potentially useful as transcript-level biomarkers for predicting drug-specific patient survival outcome. Our gene sets were robust predictors of drug-specific survival and our results included both novel and previously reported findings, suggesting that the drug-specific survival marker genes reported herein warrant further investigation for insights into drug mechanisms and for validation as biomarkers to aid cancer therapy decisions. 
    more » « less
  3. Abstract As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tauFisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher’s performance in adding timestamps to both bulk and single-cell transcriptomic samples collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNAseq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNAseq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research. 
    more » « less
  4. Circadian rhythms are found widely throughout nature where cyanobacteria are the simplest organisms, in which the molecular details of the clock have been elucidated. Circadian rhythmicity in cyanobacteria is carried out via the KaiA, KaiB, and KaiC core oscillator proteins that keep ~24 h time. A series of input and output proteins—CikA, SasA, and RpaA—regulate the clock by sensing environmental changes and timing rhythmic activities, including global rhythms of gene expression. Our previous work identified a novel set of KaiC-interacting proteins, some of which are encoded by genes that are essential for viability. To understand the relationship of these essential genes to the clock, we applied CRISPR interference (CRISPRi) which utilizes a deactivated Cas9 protein and single-guide RNA (sgRNA) to reduce the expression of target genes but not fully abolish their expression to allow for survival. Eight candidate genes were targeted, and strains were analyzed by quantitative real-time PCR (qRT-PCR) for reduction of gene expression, and rhythms of gene expression were monitored to analyze circadian phenotypes. Strains with reduced expression of SynPCC7942_0001, dnaN, which encodes for the β-clamp of the replicative DNA polymerase, or SynPCC7942_1081, which likely encodes for a KtrA homolog involved in K+ transport, displayed longer circadian rhythms of gene expression than the wild type. As neither of these proteins have been previously implicated in the circadian clock, these data suggest that diverse cellular processes, DNA replication and K+ transport, can influence the circadian clock and represent new avenues to understand clock function. 
    more » « less
  5. Background:Transcriptomics can reveal much about cellular activity, and cancer transcriptomics have been useful in investigating tumor cell behaviors. Patterns in transcriptome-wide gene expression can be used to investigate biological mechanisms and pathways that can explain the variability in patient response to cancer therapies. Methods:We identified gene expression patterns related to patient drug response by clustering tumor gene expression data and selecting from the resulting gene clusters those where expression of cluster genes was related to patient survival on specific drugs. We then investigated these gene clusters for biological meaning using several approaches, including identifying common genomic locations and transcription factors whose targets were enriched in these clusters and performing survival analyses to support these candidate transcription factor-drug relationships. Results:We identified gene clusters related to drug-specific survival, and through these, we were able to associate observed variations in patient drug response to specific known biological phenomena. Specifically, our analysis implicated 2 stem cell-related transcription factors, HOXB4 and SALL4, in poor response to temozolomide in brain cancers. In addition, expression of SNRNP70 and its targets were implicated in cetuximab response by 3 different analyses, although the mechanism remains unclear. We also found evidence that 2 cancer-related chromosomal structural changes may impact drug efficacy. Conclusion:In this study, we present the gene clusters identified and the results of our systematic analysis linking drug efficacy to specific transcription factors, which are rich sources of potential mechanistic relationships impacting patient outcomes. We also highlight the most promising of these results, which were supported by multiple analyses and by previous research. We report these findings as promising avenues for independent validation and further research into cancer treatments and patient response. 
    more » « less