skip to main content


Title: Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space
Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth’s magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth’s magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.  more » « less
Award ID(s):
1805829
NSF-PAR ID:
10097836
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Science
Volume:
362
Issue:
6421
ISSN:
0036-8075
Page Range / eLocation ID:
1391 to 1395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The magnetotail is the main source of energetic electrons for Earth’s inner magnetosphere. Electrons are adiabatically heated during flow bursts (rapid earthward motion of the plasma) within dipolarizing flux bundles (concurrent increases and dipolarizations of the magnetic field). The electron heating is evidenced near or within dipolarizing flux bundles as rapid increases in the energetic electron flux (10–100 keV); it is often referred to as injection. The anisotropy in the injected electron distributions, which is often perpendicular to the magnetic field, generates whistler‐mode waves, also commonly observed around such dipolarizing flux bundles. Test‐particle simulations reproduce several features of injections and electron adiabatic dynamics. However, the feedback of the waves on the electron distributions has been not incorporated into such simulations. This is because it has been unclear, thus far, whether incorporating such feedback is necessary to explain the evolution of the electron pitch‐angle and energy distributions from their origin, reconnection ejecta in the mid‐tail region, to their final destination, and the electron injection sites in the inner magnetosphere. Using an analytical model we demonstrate that wave feedback is indeed important for the evolution of electron distributions. Combining canonical guiding center theory and the mapping technique we model electron adiabatic heating and scattering by whistler‐mode waves around a dipolarizing flux bundle. Comparison with spacecraft observations allows us to validate the efficacy of the proposed methodology. Specifically, we demonstrate that electron resonant interactions with whistler‐mode waves can indeed change markedly the pitch‐angle distribution of energetic electrons at the injection site and are thus critical to incorporate in order to explain the observations. We discuss the importance of such resonant interactions for injection physics and for magnetosphere‐ionosphere coupling.

     
    more » « less
  2. Abstract

    We perform a 2.5-dimensional particle-in-cell simulation of a quasi-parallel shock, using parameters for the Earth’s bow shock, to examine electron acceleration and heating due to magnetic reconnection. The shock transition region evolves from the ion-coupled reconnection dominant stage to the electron-only reconnection dominant stage, as time elapses. The electron temperature enhances locally in each reconnection site, and ion-scale magnetic islands generated by ion-coupled reconnection show the most significant enhancement of the electron temperature. The electron energy spectrum shows a power law, with a power-law index around 6. We perform electron trajectory tracing to understand how they are energized. Some electrons interact with multiple electron-only reconnection sties, and Fermi acceleration occurs during multiple reflections. Electrons trapped in ion-scale magnetic islands can be accelerated in another mechanism. Islands move in the shock transition region, and electrons can obtain larger energy from the in-plane electric field than the electric potential in those islands. These newly found energization mechanisms in magnetic islands in the shock can accelerate electrons to energies larger than the achievable energies by the conventional energization due to the parallel electric field and shock drift acceleration. This study based on the selected particle analysis indicates that the maximum energy in the nonthermal electrons is achieved through acceleration in ion-scale islands, and electron-only reconnection accounts for no more than half of the maximum energy, as the lifetime of sub-ion-scale islands produced by electron-only reconnection is several times shorter than that of ion-scale islands.

     
    more » « less
  3. Abstract We investigate the detailed properties of electron inflow in an electron-only reconnection event observed by the four Magnetospheric Multiscale (MMS) spacecraft in the Earth's turbulent magnetosheath downstream of the quasi-parallel bow shock. The lack of ion coupling was attributed to the small-scale sizes of the current sheets, and the observed bidirectional super-Alfvénic electron jets indicate that the MMS spacecraft crossed the reconnecting current sheet on both sides of an active X-line. Remarkably, the MMS spacecraft observed the presence of large asymmetries in the two electron inflows, with the inflows (normal to the current sheet) on the two sides of the reconnecting current layer differing by as much as a factor of four. Furthermore, even though the four MMS spacecraft were separated by less than seven electron skin depths, the degree of inflow asymmetry was significantly different at the different spacecraft. The asymmetry in the inflow speeds was larger with increasing distances downstream from the reconnection site, and the asymmetry was opposite on the two sides of the X-line. We compare the MMS observations with a 2D kinetic particle-in-cell (PIC) simulation and find that the asymmetry in the inflow speeds stems from in-plane currents generated via the combination of reconnection-mediated inflows and parallel flows along the magnetic separatrices in the presence of a large guide field. 
    more » « less
  4. Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field–particle correlation signatures of electron energization in 2D strong-guide-field collisionless magnetic reconnection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity–space signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk acceleration of the out-of-plane electron flow by the parallel electric field that drives the reconnection, a non-resonant mechanism of energization. We explore the variation of these velocity–space signatures over the plasma beta range 0.01≤βi≤1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the kinetic features of electron energization in the exhaust region to propose a single-point diagnostic, which can potentially identify a reconnection exhaust region using spacecraft observations. 
    more » « less
  5. Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field-particle correlation (FPC) signatures of electron energization in 2D strong-guide-field collisionless magnetic reconnection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity-space signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk acceleration of the out-of-plane electron flow by parallel electric field that drives the reconnection, a non-resonant mechanism of energization. We explore the variation of these velocity-space signatures over the plasma beta range 0.01 < beta_i < 1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the kinetic features of electron energization in the exhaust region to propose a single-point diagnostic which can potentially identify a reconnection exhaust region using spacecraft observations. 
    more » « less