Collisionless plasma systems are often studied using fully kinetic simulations, where protons and electrons are treated as particles. Due to their computational expense, it is necessary to reduce the ion-to-electron mass ratio or the ratio between plasma and cyclotron frequencies in simulations of large systems. In this Letter we show that when electron-scale waves are present in larger-scale systems, numerical parameters affect their amplitudes and effects on the larger system. Using lower-hybrid drift waves during magnetic reconnection as an example, we find that the ratio between the wave electric field and the reconnection electric field scales as , while the phase relationship is also affected. The combination of these effects means that the anomalous drag that contributes to momentum balance in the reconnection region can be underestimated by an order of magnitude. The results are relevant to the coupling of electron-scale waves to ion-scale reconnection regions, and other systems such as collisionless shocks. Published by the American Physical Society2024 
                        more » 
                        « less   
                    
                            
                            Direct observations of anomalous resistivity and diffusion in collisionless plasma
                        
                    
    
            Abstract Coulomb collisions provide plasma resistivity and diffusion but in many low-density astrophysical plasmas such collisions between particles are extremely rare. Scattering of particles by electromagnetic waves can lower the plasma conductivity. Such anomalous resistivity due to wave-particle interactions could be crucial to many processes, including magnetic reconnection. It has been suggested that waves provide both diffusion and resistivity, which can support the reconnection electric field, but this requires direct observation to confirm. Here, we directly quantify anomalous resistivity, viscosity, and cross-field electron diffusion associated with lower hybrid waves using measurements from the four Magnetospheric Multiscale (MMS) spacecraft. We show that anomalous resistivity is approximately balanced by anomalous viscosity, and thus the waves do not contribute to the reconnection electric field. However, the waves do produce an anomalous electron drift and diffusion across the current layer associated with magnetic reconnection. This leads to relaxation of density gradients at timescales of order the ion cyclotron period, and hence modifies the reconnection process. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10349934
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The ionospheric Alfvén resonator (IAR) is a structure formed by the rapid decrease in the plasma density above a planetary ionosphere. This results in a corresponding increase in the Alfvén speed that can provide partial reflection of Alfvén waves. At Earth, the IAR on auroral field lines is associated with the broadband acceleration of auroral particles, sometimes termed the Alfvénic aurora. This arises since phase mixing in the IAR reduces the perpendicular wavelength of the Alfvén waves, which enhances the parallel electric field due to electron inertia. This parallel electric field fluctuates at frequencies of 0.1–20.0 Hz, comparable to the electron transit time through the acceleration region, leading to the broadband acceleration. The prevalence of such broadband acceleration at Jupiter suggests that a similar process can occur in the Jovian IAR. A numerical model of Alfvén wave propagation in the Jovian IAR has been developed to investigate these interactions, indicating that the IAR resonant frequencies are in the same range as those at Earth. This model describes the evolution of the electric and magnetic fields in the low‐altitude region close to Jupiter that is sampled during Juno's perijove passes. In particular, the model relates measurement of magnetic fields below the ion cyclotron frequency from the MAG and Waves instruments on Juno and electric fields from Waves to the associated parallel electric fields that can accelerate auroral particles.more » « less
- 
            Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field–particle correlation signatures of electron energization in 2D strong-guide-field collisionless magnetic reconnection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity–space signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk acceleration of the out-of-plane electron flow by the parallel electric field that drives the reconnection, a non-resonant mechanism of energization. We explore the variation of these velocity–space signatures over the plasma beta range 0.01≤βi≤1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the kinetic features of electron energization in the exhaust region to propose a single-point diagnostic, which can potentially identify a reconnection exhaust region using spacecraft observations.more » « less
- 
            Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field-particle correlation (FPC) signatures of electron energization in 2D strong-guide-field collisionless magnetic reconnection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity-space signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk acceleration of the out-of-plane electron flow by parallel electric field that drives the reconnection, a non-resonant mechanism of energization. We explore the variation of these velocity-space signatures over the plasma beta range 0.01 < beta_i < 1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the kinetic features of electron energization in the exhaust region to propose a single-point diagnostic which can potentially identify a reconnection exhaust region using spacecraft observations.more » « less
- 
            Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth’s magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth’s magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    