Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT + BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.
more »
« less
Investigating Rectal Toxicity Associated Dosimetric Features with Deformable Accumulated Rectal Surface Dose Maps for Cervical Cancer Radiotherapy
Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume histogram, which is the parameter lacking spatial dose information. To overcome this limit, we explore a comprehensive rectal dose-toxicity model based on both dose volume histogram and dose map features for accurate radiation toxicity prediction.
more »
« less
- Award ID(s):
- 1657364
- PAR ID:
- 10097918
- Date Published:
- Journal Name:
- Radiation oncology
- Volume:
- 13
- Issue:
- 125
- ISSN:
- 1748-717X
- Page Range / eLocation ID:
- 1 - 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PURPOSE: Identify Oropharyngeal cancer (OPC) patients at high-risk of developing long-term severe radiation-associated symptoms using dose volume histograms for organs-at-risk, via unsupervised clustering. MATERIAL AND METHODS: All patients were treated using radiation therapy for OPC. Dose-volume histograms of organs-at-risk were extracted from patients’ treatment plans. Symptom ratings were collected via the MD Anderson Symptom Inventory (MDASI) given weekly during, and 6 months post-treatment. Drymouth, trouble swallowing, mucus, and vocal dysfunction were selected for analysis in this study. Patient stratifications were obtained by applying Bayesian Mixture Models with three components to patient’s dose histograms for relevant organs. The clusters with the highest total mean doses were translated into dose thresholds using rule mining. Patient stratifications were compared against Tumor staging information using multivariate likelihood ratio tests. Model performance for prediction of moderate/severe symptoms at 6 months was compared against normal tissue complication probability (NTCP) models using cross-validation. RESULTS: A total of 349 patients were included for long-term symptom prediction. High-risk clusters were significantly correlated with outcomes for severe late drymouth (p <.0001, OR = 2.94), swallow (p = .002, OR = 5.13), mucus (p = .001, OR = 3.18), and voice (p = .009, OR = 8.99). Simplified clusters were also correlated with late severe symptoms for drymouth (p <.001, OR = 2.77), swallow (p = .01, OR = 3.63), mucus (p = .01, OR = 2.37), and voice (p <.001, OR = 19.75). Proposed cluster stratifications show better performance than NTCP models for severe drymouth (AUC.598 vs.559, MCC.143 vs.062), swallow (AUC.631 vs.561, MCC.20 vs -.030), mucus (AUC.596 vs.492, MCC.164 vs -.041), and voice (AUC.681 vs.555, MCC.181 vs -.019). Simplified dose thresholds also show better performance than baseline models for predicting late severe ratings for all symptoms. CONCLUSION: Our results show that leveraging the 3-D dose histograms from radiation therapy plan improves stratification of patients according to their risk of experiencing long-term severe radiation associated symptoms, beyond existing NTPC models. Our rule-based method can approximate our stratifications with minimal loss of accuracy and can proactively identify risk factors for radiation-associated toxicity.more » « less
-
An immunotherapy trial often uses the phase I/II design to identify the optimal biological dose, which monitors the efficacy and toxicity outcomes simultaneously in a single trial. The progression-free survival rate is often used as the efficacy outcome in phase I/II immunotherapy trials. As a result, patients developing disease progression in phase I/II immunotherapy trials are generally seriously ill and are often treated off the trial for ethical consideration. Consequently, the happening of disease progression will terminate the toxicity event but not vice versa, so the issue of the semi-competing risks arises. Moreover, this issue can become more intractable with the late-onset outcomes, which happens when a relatively long follow-up time is required to ascertain progression-free survival. This paper proposes a novel Bayesian adaptive phase I/II design accounting for semi-competing risks outcomes for immunotherapy trials, referred to as the dose-finding design accounting for semi-competing risks outcomes for immunotherapy trials (SCI) design. To tackle the issue of the semi-competing risks in the presence of late-onset outcomes, we re-construct the likelihood function based on each patient's actual follow-up time and develop a data augmentation method to efficiently draw posterior samples from a series of Beta-binomial distributions. We propose a concise curve-free dose-finding algorithm to adaptively identify the optimal biological dose using accumulated data without making any parametric dose–response assumptions. Numerical studies show that the proposed SCI design yields good operating characteristics in dose selection, patient allocation, and trial duration.more » « less
-
The antiviral remdesivir has been approved by regulatory bodies such as the European Medicines Agency (EMA) and the US Food and Drug administration (FDA) for the treatment of COVID-19. However, its efficacy is debated and toxicity concerns might limit the therapeutic range of this drug. Computational models that aid in balancing efficacy and toxicity would be of great help. Parametrizing models is difficult because the prodrug remdesivir is metabolized to its active form (RDV-TP) upon cell entry, which complicates dose–activity relationships. Here, we employ a computational model that allows drug efficacy predictions based on the binding affinity of RDV-TP for its target polymerase in SARS-CoV-2. We identify an optimal infusion rate to maximize remdesivir efficacy. We also assess drug efficacy in suppressing both wild-type and resistant strains, and thereby describe a drug regimen that may select for resistance. Our results differ from predictions using prodrug dose–response curves (pseudo-EC50s). We expect that reaching 90% inhibition (EC90) is insufficient to suppress SARS-CoV-2 in the lungs. While standard dosing mildly inhibits viral polymerase and therefore likely reduces morbidity, we also expect selection for resistant mutants for most realistic parameter ranges. To increase efficacy and safeguard against resistance, we recommend more clinical trials with dosing regimens that substantially increase the levels of RDV-TP and/or pair remdesivir with companion antivirals.more » « less
-
Summary A sequentially adaptive Bayesian design is presented for a clinical trial of cord-blood-derived natural killer cells to treat severe haematologic malignancies. Given six prognostic subgroups defined by disease type and severity, the goal is to optimize cell dose in each subgroup. The trial has five co-primary outcomes: the times to severe toxicity, cytokine release syndrome, disease progression or response and death. The design assumes a multivariate Weibull regression model, with marginals depending on dose, subgroup and patient frailties that induce association between the event times. Utilities of all possible combinations of the non-fatal outcomes over the first 100 days following cell infusion are elicited, with posterior mean utility used as a criterion to optimize the dose. For each subgroup, the design stops accrual to doses having an unacceptably high death rate and at the end of the trial selects the optimal safe dose. A simulation study is presented to validate the design's safety, ability to identify optimal doses and robustness, and to compare it with a simplified design that ignores patient heterogeneity.more » « less
An official website of the United States government

