skip to main content


Title: Monitoring CPS at Runtime - A Case Study in the UAV Domain
Unmanned aerial vehicles (UAVs) are becoming increasingly pervasive in everyday life, supporting diverse use cases such as aerial photography, delivery of goods, or disaster reconnaissance and management. UAVs are cyber-physical systems (CPS): they integrate computation (embedded software and control systems) with physical components (the UAVs flying in the physical world). UAVs in particular and CPS in general require monitoring capabilities to detect and possibly mitigate erroneous and safety-critical behavior at runtime. Existing monitoring approaches mostly do not adequately address UAV CPS characteristics such as the high number of dynamically instantiated components, the tight integration of elements, and the massive amounts of data that need to be processed. In this paper we report results of a case study on monitoring in UAVs. We discuss CPS-specific monitoring challenges and present a prototype we implemented by extending REMINDS, a framework for software monitoring so far mainly used in the domain of metallurgical plants. Additionally, we demonstrate the applicability and scalability of our approach by monitoring a real control and management system for UAVs in simulations with up to 30 drones flying in an urban area.  more » « less
Award ID(s):
1741781
NSF-PAR ID:
10097963
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Euromicro Conference on Software Engineering and Advanced Applications
Volume:
2018
Page Range / eLocation ID:
73 to 80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unoccupied Aerial Vehicles (UAVs), or drone technologies, with their high spatial resolution, temporal flexibility, and ability to repeat photogrammetry, afford a significant advancement in other remote sensing approaches for coastal mapping, habitat monitoring, and environmental management. However, geographical drone mapping and in situ fieldwork often come with a steep learning curve requiring a background in drone operations, Geographic Information Systems (GIS), remote sensing and related analytical techniques. Such a learning curve can be an obstacle for field implementation for researchers, community organizations and citizen scientists wishing to include introductory drone operations into their work. In this study, we develop a comprehensive drone training program for research partners and community members to use cost-effective, consumer-quality drones to engage in introductory drone mapping of coastal seagrass monitoring sites along the west coast of North America. As a first step toward a longer-term Public Participation GIS process in the study area, the training program includes lessons for beginner drone users related to flying drones, autonomous route planning and mapping, field safety, GIS analysis, image correction and processing, and Federal Aviation Administration (FAA) certification and regulations. Training our research partners and students, who are in most cases novice users, is the first step in a larger process to increase participation in a broader project for seagrass monitoring in our case study. While our training program originated in the United States, we discuss our experiences for research partners and communities around the globe to become more confident in introductory drone operations for basic science. In particular, our work targets novice users without a strong background in geographic research or remote sensing. Such training provides technical guidance on the implementation of a drone mapping program for coastal research, and synthesizes our approaches to provide broad guidance for using drones in support of a developing Public Participation GIS process. 
    more » « less
  2. Unmanned aerial vehicles (UAVs) have various applications in different settings, including e.g., surveillance, packet delivery, emergency response, data collection in the Internet of Things (IoT), and connectivity in cellular networks. However, this technology comes with many risks and challenges such as vulnerabilities to malicious cyber-physical attacks. This paper studies the problem of path planning for UAVs under GPS sensor permanent faults in a cyber-physical system (CPS) perspective. Based on studying and analyzing the CPS architecture of the UAV, the cyber “attacks and threats” are differentiated from attacks on sensors and communication components. An efficient way to address this problem is to introduce a novel approach for UAV’s path planning resilience to GPS permanent faults artificial potential field algorithm (RCA-APF). The proposed algorithm completes the three stages in a coordinated manner. In the first stage, the permanent faults on the GPS sensor of the UAV are detected, and the UAV starts to divert from its initial path planning. In the second stage, we estimated the location of the UAV under GPS permanent fault using Received Signal Strength (RSS) trilateration localization approach. In the final stage of the algorithm, we implemented the path planning of the UAV using an open-source UAV simulator. Experimental and simulation results demonstrate the performance of the algorithm and its effectiveness, resulting in efficient path planning for the UAV.

     
    more » « less
  3. ABSTRACT Hot spring travertine and sinter deposits record discharge from hydrothermal systems through evolving hydrothermal, hydrologic, and tectonic regimes. The location and volume of the largest deposits may reflect persistent or particularly robust periods of hydrothermal flow. As part of a broader investigation into the chemical evolution of travertine deposits, we used unoccupied aerial vehicles (UAVs) coupled with high-precision GPS surveys to collect and assemble orthorectified photomosaics and high-resolution digital elevation models (DEMs) using structure-from-motion (SfM) software for eight sites in the northern Central Nevada Seismic Belt. These sites range from large, intrabasin travertine mounds to travertine and sinter deposits offset by Quaternary faults. Some highlights of the research made possible by the acquisition of these topographic datasets include: 1) geomorphic evidence that hydrothermal flow at Hyder Hot Springs has persisted since at least the last highstand of glacial Lake Dixie, 2) documenting the impact of hot spring sinter and hydrothermal alteration on the preservation and morphology of Quaternary fault scarp profiles, 3) mapping the extent of a large extinct travertine deposit in the Stillwater Range, and 4) constraints on the offset of hot spring deposits affected by Quaternary faulting at Kyle Hot Springs. Areas between 0.51 – 1.23 km^2 (126-303 acres) were easily acquired with less than half a day of surveying and flying, and models capable of producing orthorectified photomosaics and DEMs with average resolution of 2.5 cm/pixel and 9.7 cm/pixel, respectively, were built on a desktop computer with 1-10 days of processing time. In desert landscapes, the resolution of the resulting DEMs approaches that of bare earth LiDAR datasets at a fraction of the cost, with little to no special permitting in most cases, and with limited preplanning. The imagery and models described herein are freely available from the NSF-EAR-funded data facility OpenTopography (https://portal.opentopography.org/datasets) for use in commercial, academic, and educational applications with proper attribution. 
    more » « less
  4. null (Ed.)
    Renewable energy sources such as solar and wind provide an effective solution for reducing dependency on conventional power generation and increasing the reliability and quality of power systems. Presented in this paper are design and implementation of a laboratory scale solar microgrid cyber-physical system (CPS) with wireless data monitoring as a teaching tool in the engineering technology curriculum. In the system, the solar panel, battery, charge controller, and loads form the physical layer, while the sensors, communication networks, supervisory control and data acquisition systems (SCADA) and control systems form the cyber layer. The physical layer was seamlessly integrated with the cyber layer consisting of control and communication. The objective was to create a robust CPS platform and to use the system to promote interest in and knowledge of renewable energy among university students. Experimental results showed that the maximum power point tracking (MPPT) charge controller provided the loads with power from the solar panel and used additional power to charge the rechargeable battery. Through the system, students learned and mastered key concepts and knowledge of multi-disciplinary areas including data sampling and acquisition, analog to digital conversion, solar power, battery charging, control, embedded systems and software programing. It is a valuable teaching resource for students to study renewable energy in CPS. 
    more » « less
  5. Abstract

    Digitally enabled technologies are increasingly cyber-physical systems (CPSs). They are networked in nature and made up of geographically dispersed components that manage and control data received from humans, equipment, and the environment. Researchers evaluating such technologies are thus challenged to include CPS subsystems and dynamics that might not be obvious components of a product system. Although analysts might assume CPS have negligible or purely beneficial impact on environmental outcomes, such assumptions require justification. As the physical environmental impacts of digital processes (e.g. cryptocurrency mining) gain attention, the need for explicit attention to CPS in environmental assessment becomes more salient. This review investigates how the peer-reviewed environmental assessment literature treats environmental implications of CPS, with a focus on journal articles published in English between 2010 and 2020. We identify nine CPS subsystems and dynamics addressed in this literature: energy system, digital equipment, non-digital equipment, automation and management, network infrastructure, direct costs, social and health effects, feedbacks, and cybersecurity. Based on these categories, we develop a ‘cyber-consciousness score’ reflecting the extent to which the 115 studies that met our evaluation criteria address CPS, then summarize analytical methods and modeling techniques drawn from reviewed literature to facilitate routine inclusion of CPS in environmental assessment. We find that, given challenges in establishing system boundaries, limited standardization of how to evaluate CPS dynamics, and failure to recognize the role of CPS in a product system under evaluation, the extant environmental assessment literature in peer-reviewed journals largely ignores CPS subsystems and dynamics when evaluating digital or digitally-enabled technologies.

     
    more » « less