Speech recognition by both humans and machines frequently fails in non-optimal yet common situations. For example, word recognition error rates for second-language (L2) speech can be high, especially under conditions involving background noise. At the same time, both human and machine speech recognition sometimes shows remarkable robustness against signal- and noise-related degradation. Which acoustic features of speech explain this substantial variation in intelligibility? Current approaches align speech to text to extract a small set of pre-defined spectro-temporal properties from specific sounds in particular words. However, variation in these properties leaves much cross-talker variation in intelligibility unexplained. We examine an alternative approach utilizing a perceptual similarity space acquired using self-supervised learning. This approach encodes distinctions between speech samples without requiring pre-defined acoustic features or speech-to-text alignment. We show that L2 English speech samples are less tightly clustered in the space than L1 samples reflecting variability in English proficiency among L2 talkers. Critically, distances in this similarity space are perceptually meaningful: L1 English listeners have lower recognition accuracy for L2 speakers whose speech is more distant in the space from L1 speech. These results indicate that perceptual similarity may form the basis for an entirely new speech and language analysis approach.
more »
« less
Investigating Speech Recognition for Improving Predictive AAC
Making good letter or word predictions can help accelerate the communication of users of high-tech AAC devices. This is particularly important for real-time person-to-person conversations. We investigate whether per forming speech recognition on the speaking-side of a conversation can improve language model based predictions. We compare the accuracy of three plausible microphone deployment options and the accuracy of two commercial speech recognition engines (Google and IBM Watson). We found that despite recognition word error rates of 7-16%, our ensemble of N-gram and recurrent neural network language models made predictions nearly as good as when they used the reference transcripts.
more »
« less
- Award ID(s):
- 1750193
- PAR ID:
- 10098110
- Date Published:
- Journal Name:
- Proceedings of the Eighth Workshop on Speech and Language Processing for Assistive Technologies
- Page Range / eLocation ID:
- 37-43
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Intelligent systems to support collaborative learning rely on real-time behavioral data, including language, audio, and video. However, noisy data, such as word errors in speech recognition, audio static or background noise, and facial mistracking in video, often limit the utility of multimodal data. It is an open question of how we can build reliable multimodal models in the face of substantial data noise. In this paper, we investigate the impact of data noise on the recognition of confusion and conflict moments during collaborative programming sessions by 25 dyads of elementary school learners. We measure language errors with word error rate (WER), audio noise with speech-to-noise ratio (SNR), and video errors with frame-by-frame facial tracking accuracy. The results showed that the model’s accuracy for detecting confusion and conflict in the language modality decreased drastically from 0.84 to 0.73 when the WER exceeded 20%. Similarly, in the audio modality, the model’s accuracy decreased sharply from 0.79 to 0.61 when the SNR dropped below 5 dB. Conversely, the model’s accuracy remained relatively constant in the video modality at a comparable level (> 0.70) so long as at least one learner’s face was successfully tracked. Moreover, we trained several multimodal models and found that integrating multimodal data could effectively offset the negative effect of noise in unimodal data, ultimately leading to improved accuracy in recognizing confusion and conflict. These findings have practical implications for the future deployment of intelligent systems that support collaborative learning in actual classroom settings.more » « less
-
Abstract Objective: Acoustic distortions to the speech signal impair spoken language recognition, but healthy listeners exhibit adaptive plasticity consistent with rapid adjustments in how the distorted speech input maps to speech representations, perhaps through engagement of supervised error-driven learning. This puts adaptive plasticity in speech perception in an interesting position with regard to developmental dyslexia inasmuch as dyslexia impacts speech processing and may involve dysfunction in neurobiological systems hypothesized to be involved in adaptive plasticity. Method: Here, we examined typical young adult listeners ( N = 17), and those with dyslexia ( N = 16), as they reported the identity of native-language monosyllabic spoken words to which signal processing had been applied to create a systematic acoustic distortion. During training, all participants experienced incremental signal distortion increases to mildly distorted speech along with orthographic and auditory feedback indicating word identity following response across a brief, 250-trial training block. During pretest and posttest phases, no feedback was provided to participants. Results: Word recognition across severely distorted speech was poor at pretest and equivalent across groups. Training led to improved word recognition for the most severely distorted speech at posttest, with evidence that adaptive plasticity generalized to support recognition of new tokens not previously experienced under distortion. However, training-related recognition gains for listeners with dyslexia were significantly less robust than for control listeners. Conclusions: Less efficient adaptive plasticity to speech distortions may impact the ability of individuals with dyslexia to deal with variability arising from sources like acoustic noise and foreign-accented speech.more » « less
-
In this paper, we present MuteIt, an ear-worn system for recognizing unvoiced human commands. MuteIt presents an intuitive alternative to voice-based interactions that can be unreliable in noisy environments, disruptive to those around us, and compromise our privacy. We propose a twin-IMU set up to track the user's jaw motion and cancel motion artifacts caused by head and body movements. MuteIt processes jaw motion during word articulation to break each word signal into its constituent syllables, and further each syllable into phonemes (vowels, visemes, and plosives). Recognizing unvoiced commands by only tracking jaw motion is challenging. As a secondary articulator, jaw motion is not distinctive enough for unvoiced speech recognition. MuteIt combines IMU data with the anatomy of jaw movement as well as principles from linguistics, to model the task of word recognition as an estimation problem. Rather than employing machine learning to train a word classifier, we reconstruct each word as a sequence of phonemes using a bi-directional particle filter, enabling the system to be easily scaled to a large set of words. We validate MuteIt for 20 subjects with diverse speech accents to recognize 100 common command words. MuteIt achieves a mean word recognition accuracy of 94.8% in noise-free conditions. When compared with common voice assistants, MuteIt outperforms them in noisy acoustic environments, achieving higher than 90% recognition accuracy. Even in the presence of motion artifacts, such as head movement, walking, and riding in a moving vehicle, MuteIt achieves mean word recognition accuracy of 91% over all scenarios.more » « less
-
The ability to assess children’s conversational interaction is critical in determining language and cognitive proficiency for typically developing and at-risk children. The earlier at-risk child is identified, the earlier support can be provided to reduce the social impact of the speech disorder. To date, limited research has been performed for young child speech recognition in classroom settings. This study addresses speech recognition research with naturalistic children’s speech, where age varies from 2.5 to 5 years. Data augmentation is relatively under explored for child speech. Therefore, we investigate the effectiveness of data augmentation techniques to improve both language and acoustic models. We explore alternate text augmentation approaches using adult data, Web data, and via text generated by recurrent neural networks. We also compare several acoustic augmentation techniques: speed perturbation, tempo perturbation, and adult data. Finally, we comment on child word count rates to assess child speech development.more » « less
An official website of the United States government

