skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Noisy is Too Noisy? The Impact of Data Noise on Multimodal Recognition of Confusion and Conflict During Collaborative Learning
Intelligent systems to support collaborative learning rely on real-time behavioral data, including language, audio, and video. However, noisy data, such as word errors in speech recognition, audio static or background noise, and facial mistracking in video, often limit the utility of multimodal data. It is an open question of how we can build reliable multimodal models in the face of substantial data noise. In this paper, we investigate the impact of data noise on the recognition of confusion and conflict moments during collaborative programming sessions by 25 dyads of elementary school learners. We measure language errors with word error rate (WER), audio noise with speech-to-noise ratio (SNR), and video errors with frame-by-frame facial tracking accuracy. The results showed that the model’s accuracy for detecting confusion and conflict in the language modality decreased drastically from 0.84 to 0.73 when the WER exceeded 20%. Similarly, in the audio modality, the model’s accuracy decreased sharply from 0.79 to 0.61 when the SNR dropped below 5 dB. Conversely, the model’s accuracy remained relatively constant in the video modality at a comparable level (> 0.70) so long as at least one learner’s face was successfully tracked. Moreover, we trained several multimodal models and found that integrating multimodal data could effectively offset the negative effect of noise in unimodal data, ultimately leading to improved accuracy in recognizing confusion and conflict. These findings have practical implications for the future deployment of intelligent systems that support collaborative learning in actual classroom settings.  more » « less
Award ID(s):
2229612
PAR ID:
10496733
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 25th International Conference on Multimodal Interaction
ISBN:
9798400700552
Page Range / eLocation ID:
326 to 335
Format(s):
Medium: X
Location:
Paris France
Sponsoring Org:
National Science Foundation
More Like this
  1. Mitrovic, Antonija; Bosch, Nigel (Ed.)
    Classroom environments are challenging for artificially intelligent agents primarily because classroom noise dilutes the interpretability and usefulness of gathered data. This problem is exacerbated when groups of students participate in collaborative problem solving (CPS). Here, we examine how well six popular microphones capture audio from individual groups. A primary usage of audio data is automatic speech recognition (ASR), therefore we evaluate our recordings by examining the accuracy of downstream ASR using the Google Cloud Platform. We simultaneously captured the audio of all microphones for 11 unique groups of three participants first reading a prepared script, and then participating in a collaborative problem solving exercise. We vary participants, noise conditions, and speech contexts. Transcribed speech was evaluated using word error rate (WER). We find that scripted speech is transcribed with a surprisingly high degree of accuracy across groups (average WER = 0.114, SD = 0.044). However, the CPS task was much more difficult (average WER = 0.570, SD = 0.143). We found most microphones were robust to background noise below a certain threshold, but the AT-Cardioid and ProCon microphones were more robust to higher noise levels. Finally, an analysis of errors revealed that most errors were due to the ASR missing words/phrases, rather than mistranscribing them. We conclude with recommendations based on our observations. 
    more » « less
  2. In this study, we investigate how different types of masks affect automatic emotion classification in different channels of audio, visual, and multimodal. We train emotion classification models for each modality with the original data without mask and the re-generated data with mask respectively, and investigate how muffled speech and occluded facial expressions change the prediction of emotions. Moreover, we conduct the contribution analysis to study how muffled speech and occluded face interplay with each other and further investigate the individual contribution of audio, visual, and audio-visual modalities to the prediction of emotion with and without mask. Finally, we investigate the cross-corpus emotion recognition across clear speech and re-generated speech with different types of masks, and discuss the robustness of speech emotion recognition. 
    more » « less
  3. Audio-based human activity recognition (HAR) is very popular because many human activities have unique sound signatures that can be detected using machine learning (ML) approaches. These audio-based ML HAR pipelines often use common featurization techniques, such as extracting various statistical and spectral features by converting time domain signals to the frequency domain (using an FFT) and using them to train ML models. Some of these approaches also claim privacy benefits by preventing the identification of human speech. However, recent deep learning-based automatic speech recognition (ASR) models pose new privacy challenges to these featurization techniques. In this paper, we systematically evaluate various featurization approaches for audio data, assessing their privacy risks through metrics like speech intelligibility (PER and WER) while considering the utility tradeoff in terms of ML-based activity recognition accuracy. Our findings reveal the susceptibility of these approaches to speech content recovery when exposed to recent ASR models, especially under re-tuning or retraining conditions. Notably, fine-tuned ASR models achieved an average Phoneme Error Rate (PER) of 39.99% and Word Error Rate (WER) of 44.43% in speech recognition for these approaches. To overcome these privacy concerns, we propose Kirigami, a lightweight machine learning-based audio speech filter that removes human speech segments reducing the efficacy of ASR models (70.48% PER and 101.40% WER) while also maintaining HAR accuracy (76.0% accuracy). We show that Kirigami can be implemented on common edge microcontrollers with limited computational capabilities and memory, providing a path to deployment on a variety of IoT devices. Finally, we conducted a real-world user study and showed the robustness of Kirigami on a laptop and an ARM Cortex-M4F microcontroller under three different background noises. 
    more » « less
  4. In order to build more human-like cognitive agents, systems capable of detecting various human emotions must be designed to respond appropriately. Confusion, the combination of an emotional and cognitive state, is under-explored. In this paper, we build upon prior work to develop models that detect confusion from three modalities: video (facial features), audio (prosodic features), and text (transcribed speech features). Our research improves the data collection process by allowing for continuous (as opposed to discrete) annotation of confusion levels. We also craft models based on recurrent neural networks (RNNs) given their ability to predict sequential data. In our experiments, we find that text and video modalities are the most important in predicting confusion while the explored audio features are relatively unimportant predictors of confusion in our data. 
    more » « less
  5. Speech and language development in children are crucial for ensuring effective skills in their long-term learning ability. A child’s vocabulary size at the time of entry into kindergarten is an early indicator of their learning ability to read and potential long-term success in school. The preschool classroom is thus a promising venue for assessing growth in young children by measuring their interactions with teachers as well as classmates. However, to date limited studies have explored such naturalistic audio communications. Automatic Speech Recognition (ASR) technologies provide an opportunity for ’Early Childhood’ researchers to obtain knowledge through automatic analysis of naturalistic classroom recordings in measuring such interactions. For this purpose, 208 hours of audio recordings across 48 daylong sessions are collected in a childcare learning center in the United States using Language Environment Analysis (LENA) devices worn by the preschool children. Approximately 29 hours of adult speech and 26 hours of child speech is segmented using manual transcriptions provided by CRSS transcription team. Traditional as well as End-to-End ASR models are trained on adult/child speech data subset. Factorized Time Delay Neural Network provides a best Word-Error-Rate (WER) of 35.05% on the adult subset of the test set. End-to-End transformer models achieve 63.5% WER on the child subset of the test data. Next, bar plots demonstrating the frequency of WH-question words in Science vs. Reading activity areas of the preschool are presented for sessions in the test set. It is suggested that learning spaces could be configured to encourage greater adult-child conversational engagement given such speech/audio assessment strategies. 
    more » « less