skip to main content


This content will become publicly available on October 9, 2024

Title: How Noisy is Too Noisy? The Impact of Data Noise on Multimodal Recognition of Confusion and Conflict During Collaborative Learning
Intelligent systems to support collaborative learning rely on real-time behavioral data, including language, audio, and video. However, noisy data, such as word errors in speech recognition, audio static or background noise, and facial mistracking in video, often limit the utility of multimodal data. It is an open question of how we can build reliable multimodal models in the face of substantial data noise. In this paper, we investigate the impact of data noise on the recognition of confusion and conflict moments during collaborative programming sessions by 25 dyads of elementary school learners. We measure language errors with word error rate (WER), audio noise with speech-to-noise ratio (SNR), and video errors with frame-by-frame facial tracking accuracy. The results showed that the model’s accuracy for detecting confusion and conflict in the language modality decreased drastically from 0.84 to 0.73 when the WER exceeded 20%. Similarly, in the audio modality, the model’s accuracy decreased sharply from 0.79 to 0.61 when the SNR dropped below 5 dB. Conversely, the model’s accuracy remained relatively constant in the video modality at a comparable level (> 0.70) so long as at least one learner’s face was successfully tracked. Moreover, we trained several multimodal models and found that integrating multimodal data could effectively offset the negative effect of noise in unimodal data, ultimately leading to improved accuracy in recognizing confusion and conflict. These findings have practical implications for the future deployment of intelligent systems that support collaborative learning in actual classroom settings.  more » « less
Award ID(s):
2229612
NSF-PAR ID:
10496733
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 25th International Conference on Multimodal Interaction
Page Range / eLocation ID:
326 to 335
Format(s):
Medium: X
Location:
Paris France
Sponsoring Org:
National Science Foundation
More Like this
  1. Mitrovic, Antonija ; Bosch, Nigel (Ed.)
    Classroom environments are challenging for artificially intelligent agents primarily because classroom noise dilutes the interpretability and usefulness of gathered data. This problem is exacerbated when groups of students participate in collaborative problem solving (CPS). Here, we examine how well six popular microphones capture audio from individual groups. A primary usage of audio data is automatic speech recognition (ASR), therefore we evaluate our recordings by examining the accuracy of downstream ASR using the Google Cloud Platform. We simultaneously captured the audio of all microphones for 11 unique groups of three participants first reading a prepared script, and then participating in a collaborative problem solving exercise. We vary participants, noise conditions, and speech contexts. Transcribed speech was evaluated using word error rate (WER). We find that scripted speech is transcribed with a surprisingly high degree of accuracy across groups (average WER = 0.114, SD = 0.044). However, the CPS task was much more difficult (average WER = 0.570, SD = 0.143). We found most microphones were robust to background noise below a certain threshold, but the AT-Cardioid and ProCon microphones were more robust to higher noise levels. Finally, an analysis of errors revealed that most errors were due to the ASR missing words/phrases, rather than mistranscribing them. We conclude with recommendations based on our observations. 
    more » « less
  2. The PoseASL dataset consists of color and depth videos collected from ASL signers at the Linguistic and Assistive Technologies Laboratory under the direction of Matt Huenerfauth, as part of a collaborative research project with researchers at the Rochester Institute of Technology, Boston University, and the University of Pennsylvania. Access: After becoming an authorized user of Databrary, please contact Matt Huenerfauth if you have difficulty accessing this volume. We have collected a new dataset consisting of color and depth videos of fluent American Sign Language signers performing sequences ASL signs and sentences. Given interest among sign-recognition and other computer-vision researchers in red-green-blue-depth (RBGD) video, we release this dataset for use by the research community. In addition to the video files, we share depth data files from a Kinect v2 sensor, as well as additional motion-tracking files produced through post-processing of this data. Organization of the Dataset: The dataset is organized into sub-folders, with codenames such as "P01" or "P16" etc. These codenames refer to specific human signers who were recorded in this dataset. Please note that there was no participant P11 nor P14; those numbers were accidentally skipped during the process of making appointments to collect video stimuli. Task: During the recording session, the participant was met by a member of our research team who was a native ASL signer. No other individuals were present during the data collection session. After signing the informed consent and video release document, participants responded to a demographic questionnaire. Next, the data-collection session consisted of English word stimuli and cartoon videos. The recording session began with showing participants stimuli consisting of slides that displayed English word and photos of items, and participants were asked to produce the sign for each (PDF included in materials subfolder). Next, participants viewed three videos of short animated cartoons, which they were asked to recount in ASL: - Canary Row, Warner Brothers Merrie Melodies 1950 (the 7-minute video divided into seven parts) - Mr. Koumal Flies Like a Bird, Studio Animovaneho Filmu 1969 - Mr. Koumal Battles his Conscience, Studio Animovaneho Filmu 1971 The word list and cartoons were selected as they are identical to the stimuli used in the collection of the Nicaraguan Sign Language video corpora - see: Senghas, A. (1995). Children’s Contribution to the Birth of Nicaraguan Sign Language. Doctoral dissertation, Department of Brain and Cognitive Sciences, MIT. Demographics: All 14 of our participants were fluent ASL signers. As screening, we asked our participants: Did you use ASL at home growing up, or did you attend a school as a very young child where you used ASL? All the participants responded affirmatively to this question. A total of 14 DHH participants were recruited on the Rochester Institute of Technology campus. Participants included 7 men and 7 women, aged 21 to 35 (median = 23.5). All of our participants reported that they began using ASL when they were 5 years old or younger, with 8 reporting ASL use since birth, and 3 others reporting ASL use since age 18 months. Filetypes: *.avi, *_dep.bin: The PoseASL dataset has been captured by using a Kinect 2.0 RGBD camera. The output of this camera system includes multiple channels which include RGB, depth, skeleton joints (25 joints for every video frame), and HD face (1,347 points). The video resolution produced in 1920 x 1080 pixels for the RGB channel and 512 x 424 pixels for the depth channels respectively. Due to limitations in the acceptable filetypes for sharing on Databrary, it was not permitted to share binary *_dep.bin files directly produced by the Kinect v2 camera system on the Databrary platform. If your research requires the original binary *_dep.bin files, then please contact Matt Huenerfauth. *_face.txt, *_HDface.txt, *_skl.txt: To make it easier for future researchers to make use of this dataset, we have also performed some post-processing of the Kinect data. To extract the skeleton coordinates of the RGB videos, we used the Openpose system, which is capable of detecting body, hand, facial, and foot keypoints of multiple people on single images in real time. The output of Openpose includes estimation of 70 keypoints for the face including eyes, eyebrows, nose, mouth and face contour. The software also estimates 21 keypoints for each of the hands (Simon et al, 2017), including 3 keypoints for each finger, as shown in Figure 2. Additionally, there are 25 keypoints estimated for the body pose (and feet) (Cao et al, 2017; Wei et al, 2016). Reporting Bugs or Errors: Please contact Matt Huenerfauth to report any bugs or errors that you identify in the corpus. We appreciate your help in improving the quality of the corpus over time by identifying any errors. Acknowledgement: This material is based upon work supported by the National Science Foundation under award 1749376: "Collaborative Research: Multimethod Investigation of Articulatory and Perceptual Constraints on Natural Language Evolution." 
    more » « less
  3. In this study, we investigate how different types of masks affect automatic emotion classification in different channels of audio, visual, and multimodal. We train emotion classification models for each modality with the original data without mask and the re-generated data with mask respectively, and investigate how muffled speech and occluded facial expressions change the prediction of emotions. Moreover, we conduct the contribution analysis to study how muffled speech and occluded face interplay with each other and further investigate the individual contribution of audio, visual, and audio-visual modalities to the prediction of emotion with and without mask. Finally, we investigate the cross-corpus emotion recognition across clear speech and re-generated speech with different types of masks, and discuss the robustness of speech emotion recognition. 
    more » « less
  4. Speech and language development in children are crucial for ensuring effective skills in their long-term learning ability. A child’s vocabulary size at the time of entry into kindergarten is an early indicator of their learning ability to read and potential long-term success in school. The preschool classroom is thus a promising venue for assessing growth in young children by measuring their interactions with teachers as well as classmates. However, to date limited studies have explored such naturalistic audio communications. Automatic Speech Recognition (ASR) technologies provide an opportunity for ’Early Childhood’ researchers to obtain knowledge through automatic analysis of naturalistic classroom recordings in measuring such interactions. For this purpose, 208 hours of audio recordings across 48 daylong sessions are collected in a childcare learning center in the United States using Language Environment Analysis (LENA) devices worn by the preschool children. Approximately 29 hours of adult speech and 26 hours of child speech is segmented using manual transcriptions provided by CRSS transcription team. Traditional as well as End-to-End ASR models are trained on adult/child speech data subset. Factorized Time Delay Neural Network provides a best Word-Error-Rate (WER) of 35.05% on the adult subset of the test set. End-to-End transformer models achieve 63.5% WER on the child subset of the test data. Next, bar plots demonstrating the frequency of WH-question words in Science vs. Reading activity areas of the preschool are presented for sessions in the test set. It is suggested that learning spaces could be configured to encourage greater adult-child conversational engagement given such speech/audio assessment strategies. 
    more » « less
  5. Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system. 
    more » « less