skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Review: Using physiologically based models to predict population responses to phytochemicals by wild vertebrate herbivores
To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex in vivo dynamics of nutrient–nutrient interactions and nutrient–toxin interactions associated with foraging. Mathematical modeling has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency (e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-based ecological adaptations.  more » « less
Award ID(s):
1826801
PAR ID:
10098211
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
animal
Volume:
12
Issue:
s2
ISSN:
1751-7311
Page Range / eLocation ID:
s383 to s398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pollinator nutritional ecology provides insights into plant–pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species’ protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant–pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant–pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators. 
    more » « less
  2. To effectively forage in natural environments, organisms must adapt to changes in the quality and yield of food sources across multiple timescales. Individuals foraging in groups act based on both their private observations and the opinions of their neighbours. How do these information sources interact in changing environments? We address this problem in the context of honeybee colonies whose inhibitory social interactions promote adaptivity and consensus needed for effective foraging. Individual and social interactions within a mathematical model of collective decisions shape the nutrition yield of a group foraging from feeders with temporally switching quality. Social interactions improve foraging from a single feeder if temporal switching is fast or feeder quality is low. When the colony chooses from multiple feeders, the most beneficial form of social interaction is direct switching, whereby bees flip the opinion of nest-mates foraging at lower-yielding feeders. Model linearization shows that effective social interactions increase the fraction of the colony at the correct feeder (consensus) and the rate at which bees reach that feeder (adaptivity). Our mathematical framework allows us to compare a suite of social inhibition mechanisms, suggesting experimental protocols for revealing effective colony foraging strategies in dynamic environments. 
    more » « less
  3. Abstract Frugivore foraging behavior is largely influenced by two key groups of chemical traits: nutrients and secondary metabolites. Many secondary metabolites function in plant defense, but their consumption can negatively impact both mutualistic and antagonistic frugivores, often due to toxic properties of the metabolites or through nutrient absorption interference. Frugivores are assumed to maximize nutrient acquisition while avoiding or minimizing toxic metabolite intake, but the relative roles of co‐occurring nutrients and secondary metabolites in foraging behavior are not well understood. Here, we used a neotropical fruit bat to investigate the interactive effects of nutrients and a broadly bioactive fruit secondary metabolite, piperine, on two essential processes in nutrient acquisition, namely foraging behavior and nutrient absorption. Through the manipulation of nutrient and piperine concentrations in artificial diets, we showed that captive fruit bats prioritize nutrient concentrations regardless of the levels of piperine, even though piperine is a strong deterrent on its own. Furthermore, our findings reveal that while piperine has no detectable influence on total sugar absorption, it reduces protein absorption, which is a crucial and limited nutrient in the frugivore diet. Overall, our results demonstrate the importance of considering the interaction between co‐occurring chemical traits in fruit pulp to better understand frugivore foraging and physiology. 
    more » « less
  4. Abstract Purpose of ReviewAquatic foods are increasingly being recognized as a diverse, bioavailable source of nutrients, highlighting the importance of fisheries and aquaculture for human nutrition. However, studies focusing on the nutrient supply of aquatic foods often differ in the nutrients they examine, potentially biasing their contribution to nutrition security and leading to ineffective policies or management decisions. Recent FindingsWe create a decision framework to effectively select nutrients in aquatic food research based on three key domains: human physiological importance, nutritional needs of the target population (demand), and nutrient availability in aquatic foods compared to other accessible dietary sources (supply). We highlight 41 nutrients that are physiologically important, exemplify the importance of aquatic foods relative to other food groups in the food system in terms of concentration per 100 g and apparent consumption, and provide future research pathways that we consider of high importance for aquatic food nutrition. SummaryOverall, our study provides a framework to select focal nutrients in aquatic food research and ensures a methodical approach to quantifying the importance of aquatic foods for nutrition security and public health. 
    more » « less
  5. Abstract Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear.Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested.We used repeated stable isotope measurements (δ13C, δ15N;N = 3,509) and 6 years of capture–mark–recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies.Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists.These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change. 
    more » « less