skip to main content


Title: Estimation with Incomplete Data: The Linear Case

Traditional methods for handling incomplete data, including Multiple Imputation and Maximum Likelihood, require that the data be Missing At Random (MAR). In most cases, however, missingness in a variable depends on the underlying value of that variable. In this work, we devise model-based methods to consistently estimate mean, variance and covariance given data that are Missing Not At Random (MNAR). While previous work on MNAR data require variables to be discrete, we extend the analysis to continuous variables drawn from Gaussian distributions. We demonstrate the merits of our techniques by comparing it empirically to state of the art software packages.

 
more » « less
Award ID(s):
1704932
NSF-PAR ID:
10098282
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International Joint Conferences on Artificial Intelligence Organization
Page Range / eLocation ID:
5082 to 5088
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Implicit feedback is widely used in collaborative filtering methods for recommendation. It is well known that implicit feedback contains a large number of values that are missing not at random (MNAR); and the missing data is a mixture of negative and unknown feedback, making it difficult to learn users’ negative preferences. Recent studies modeled exposure, a latent missingness variable which indicates whether an item is exposed to a user, to give each missing entry a confidence of being negative feedback. However, these studies use static models and ignore the information in temporal dependencies among items, which seems to be an essential underlying factor to subsequent missingness. To model and exploit the dynamics of missingness, we propose a latent variable named “user intent” to govern the temporal changes of item missingness, and a hidden Markov model to represent such a process. The resulting framework captures the dynamic item missingness and incorporate it into matrix factorization (MF) for recommendation. We also explore two types of constraints to achieve a more compact and interpretable representation of user intents. Experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommender systems. 
    more » « less
  2. Missing data are ubiquitous in many domain such as healthcare. When these data entries are not missing completely at random, the (conditional) independence relations in the observed data may be different from those in the complete data generated by the underlying causal process.Consequently, simply applying existing causal discovery methods to the observed data may lead to wrong conclusions. In this paper, we aim at developing a causal discovery method to recover the underlying causal structure from observed data that are missing under different mechanisms, including missing completely at random (MCAR),missing at random (MAR), and missing not at random (MNAR). With missingness mechanisms represented by missingness graphs (m-graphs),we analyze conditions under which additional correction is needed to derive conditional independence/dependence relations in the complete data. Based on our analysis, we propose Miss-ing Value PC (MVPC), which extends the PC algorithm to incorporate additional corrections.Our proposed MVPC is shown in theory to give asymptotically correct results even on data that are MAR or MNAR. Experimental results on both synthetic data and real healthcare applications illustrate that the proposed algorithm is able to find correct causal relations even in the general case of MNAR. 
    more » « less
  3. The aim of the article is twofold: (i) present a pivotal setting where using an extra experiment for restoring information lost due to missing not at random (MNAR) is practically feasible; (ii) attract attention to a wide spectrum of new research topics created by the proposed methodology of exploring the missing mechanism. It is well known that if the likelihood of missing an observation depends on its value, then the missing is MNAR, no consistent estimation is possible, and the only way to recover destroyed information is to study the likelihood of missing via an extra experiment. One of the main practical issues with an extra‐sample approach is as follows. Letnandmbe the numbers of observations in a MNAR time series and in an extra sample exploring the likelihood of missing respectively. An oracle, that knows the likelihood of missing, can estimate the spectral density of an ARMA‐type spectral density with the MISE proportional to , while a differentiable likelihood may be estimated only with the MISE proportional tom−2/3. On first glance, these familiar facts yield that the proposed approach is impractical becausemmust be in order larger thannto match the oracle. Surprisingly, the article presents the theory and a numerical study indicating thatmmay be in order smaller thannand still the statistician can match performance of the oracle. The proposed methodology is used for the analysis of MNAR time series of systolic blood pressure of a person with immunoglobulin D multiple myeloma. A number of possible extensions and future research topics are outlined.

     
    more » « less
  4. null (Ed.)
    Recent work in recommender systems has emphasized the importance of fairness, with a particular interest in bias and transparency, in addition to predictive accuracy. In this paper, we focus on the state of the art pairwise ranking model, Bayesian Personalized Ranking (BPR), which has previously been found to outperform pointwise models in predictive accuracy, while also being able to handle implicit feedback. Specifically, we address two limitations of BPR: (1) BPR is a black box model that does not explain its outputs, thus limiting the user's trust in the recommendations, and the analyst's ability to scrutinize a model's outputs; and (2) BPR is vulnerable to exposure bias due to the data being Missing Not At Random (MNAR). This exposure bias usually translates into an unfairness against the least popular items because they risk being under-exposed by the recommender system. In this work, we first propose a novel explainable loss function and a corresponding Matrix Factorization-based model called Explainable Bayesian Personalized Ranking (EBPR) that generates recommendations along with item-based explanations. Then, we theoretically quantify additional exposure bias resulting from the explainability, and use it as a basis to propose an unbiased estimator for the ideal EBPR loss. The result is a ranking model that aptly captures both debiased and explainable user preferences. Finally, we perform an empirical study on three real-world datasets that demonstrate the advantages of our proposed models. 
    more » « less
  5. Summary

    The statistical challenges in using big data for making valid statistical inference in the finite population have been well documented in literature. These challenges are due primarily to statistical bias arising from under‐coverage in the big data source to represent the population of interest and measurement errors in the variables available in the data set. By stratifying the population into a big data stratum and a missing data stratum, we can estimate the missing data stratum by using a fully responding probability sample and hence the population as a whole by using a data integration estimator. By expressing the data integration estimator as a regression estimator, we can handle measurement errors in the variables in big data and also in the probability sample. We also propose a fully nonparametric classification method for identifying the overlapping units and develop a bias‐corrected data integration estimator under misclassification errors. Finally, we develop a two‐step regression data integration estimator to deal with measurement errors in the probability sample. An advantage of the approach advocated in this paper is that we do not have to make unrealistic missing‐at‐random assumptions for the methods to work. The proposed method is applied to the real data example using 2015–2016 Australian Agricultural Census data.

     
    more » « less