skip to main content


Title: Debiased Explainable Pairwise Ranking from Implicit Feedback
Recent work in recommender systems has emphasized the importance of fairness, with a particular interest in bias and transparency, in addition to predictive accuracy. In this paper, we focus on the state of the art pairwise ranking model, Bayesian Personalized Ranking (BPR), which has previously been found to outperform pointwise models in predictive accuracy, while also being able to handle implicit feedback. Specifically, we address two limitations of BPR: (1) BPR is a black box model that does not explain its outputs, thus limiting the user's trust in the recommendations, and the analyst's ability to scrutinize a model's outputs; and (2) BPR is vulnerable to exposure bias due to the data being Missing Not At Random (MNAR). This exposure bias usually translates into an unfairness against the least popular items because they risk being under-exposed by the recommender system. In this work, we first propose a novel explainable loss function and a corresponding Matrix Factorization-based model called Explainable Bayesian Personalized Ranking (EBPR) that generates recommendations along with item-based explanations. Then, we theoretically quantify additional exposure bias resulting from the explainability, and use it as a basis to propose an unbiased estimator for the ideal EBPR loss. The result is a ranking model that aptly captures both debiased and explainable user preferences. Finally, we perform an empirical study on three real-world datasets that demonstrate the advantages of our proposed models.  more » « less
Award ID(s):
2026584
NSF-PAR ID:
10284599
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the ACM Conference on Recommender Systems (ACM RecSys)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite advances in deep learning methods for song recommendation, most existing methods do not take advantage of the sequential nature of song content. In addition, there is a lack of methods that can explain their predictions using the content of recommended songs and only a few approaches can handle the item cold start problem. In this work, we propose a hybrid deep learning model that uses collaborative filtering (CF) and deep learning sequence models on the Musical Instrument Digital Interface (MIDI) content of songs to provide accurate recommendations, while also being able to generate a relevant, personalized explanation for each recommended song. Compared to state-of-the-art methods, our validation experiments showed that in addition to generating explainable recommendations, our model stood out among the top performers in terms of recommendation accuracy and the ability to handle the item cold start problem. Moreover, validation shows that our personalized explanations capture properties that are in accordance with the user’s preferences. 
    more » « less
  2. null (Ed.)
    Recommender systems learn from past user preferences in order to predict future user interests and provide users with personalized suggestions. Previous research has demonstrated that biases in user profiles in the aggregate can influence the recommendations to users who do not share the majority preference. One consequence of this bias propagation effect is miscalibration, a mismatch between the types or categories of items that a user prefers and the items provided in recommendations. In this paper, we conduct a systematic analysis aimed at identifying key characteristics in user profiles that might lead to miscalibrated recommendations. We consider several categories of profile characteristics, including similarity to the average user, propensity towards popularity, profile diversity, and preference intensity. We develop predictive models of miscalibration and use these models to identify the most important features correlated with miscalibration, given different algorithms and dataset characteristics. Our analysis is intended to help system designers predict miscalibration effects and to develop recommendation algorithms with improved calibration properties. 
    more » « less
  3. Currently, there is a surge of interest in fair Artificial Intelligence (AI) and Machine Learning (ML) research which aims to mitigate discriminatory bias in AI algorithms, e.g., along lines of gender, age, and race. While most research in this domain focuses on developing fair AI algorithms, in this work, we examine the challenges which arise when humans and fair AI interact. Our results show that due to an apparent conflict between human preferences and fairness, a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world. Using college major recommendation as a case study, we build a fair AI recommender by employing gender debiasing machine learning techniques. Our offline evaluation showed that the debiased recommender makes fairer career recommendations without sacrificing its accuracy in prediction. Nevertheless, an online user study of more than 200 college students revealed that participants on average prefer the original biased system over the debiased system. Specifically, we found that perceived gender disparity is a determining factor for the acceptance of a recommendation. In other words, we cannot fully address the gender bias issue in AI recommendations without addressing the gender bias in humans. We conducted a follow-up survey to gain additional insights into the effectiveness of various design options that can help participants to overcome their own biases. Our results suggest that making fair AI explainable is crucial for increasing its adoption in the real world. 
    more » « less
  4. Recommender systems (RSs) have become an indispensable part of online platforms. With the growing concerns of algorithmic fairness, RSs are not only expected to deliver high-quality personalized content, but are also demanded not to discriminate against users based on their demographic information. However, existing RSs could capture undesirable correlations between sensitive features and observed user behaviors, leading to biased recommendations. Most fair RSs tackle this problem by completely blocking the influences of sensitive features on recommendations. But since sensitive features may also affect user interests in a fair manner (e.g., race on culture-based preferences), indiscriminately eliminating all the influences of sensitive features inevitably degenerate the recommendations quality and necessary diversities. To address this challenge, we propose a path-specific fair RS (PSF-RS) for recommendations. Specifically, we summarize all fair and unfair correlations between sensitive features and observed ratings into two latent proxy mediators, where the concept of path-specific bias (PS-Bias) is defined based on path-specific counterfactual inference. Inspired by Pearl's minimal change principle, we address the PS-Bias by minimally transforming the biased factual world into a hypothetically fair world, where a fair RS model can be learned accordingly by solving a constrained optimization problem. For the technical part, we propose a feasible implementation of PSF-RS, i.e., PSF-VAE, with weakly-supervised variational inference, which robustly infers the latent mediators such that unfairness can be mitigated while necessary recommendation diversities can be maximally preserved simultaneously. Experiments conducted on semi-simulated and real-world datasets demonstrate the effectiveness of PSF-RS. 
    more » « less
  5. null (Ed.)
    Though recommender systems are defined by personalization, recent work has shown the importance of additional, beyond-accuracy objectives, such as fairness. Because users often expect their recommendations to be purely personalized, these new algorithmic objectives must be communicated transparently in a fairness-aware recommender system. While explanation has a long history in recommender systems research, there has been little work that attempts to explain systems that use a fairness objective. Even though the previous work in other branches of AI has explored the use of explanations as a tool to increase fairness, this work has not been focused on recommendation. Here, we consider user perspectives of fairness-aware recommender systems and techniques for enhancing their transparency. We describe the results of an exploratory interview study that investigates user perceptions of fairness, recommender systems, and fairness-aware objectives. We propose three features – informed by the needs of our participants – that could improve user understanding of and trust in fairness-aware recommender systems. 
    more » « less