skip to main content

Title: Debiased Explainable Pairwise Ranking from Implicit Feedback
Recent work in recommender systems has emphasized the importance of fairness, with a particular interest in bias and transparency, in addition to predictive accuracy. In this paper, we focus on the state of the art pairwise ranking model, Bayesian Personalized Ranking (BPR), which has previously been found to outperform pointwise models in predictive accuracy, while also being able to handle implicit feedback. Specifically, we address two limitations of BPR: (1) BPR is a black box model that does not explain its outputs, thus limiting the user's trust in the recommendations, and the analyst's ability to scrutinize a model's outputs; and (2) BPR is vulnerable to exposure bias due to the data being Missing Not At Random (MNAR). This exposure bias usually translates into an unfairness against the least popular items because they risk being under-exposed by the recommender system. In this work, we first propose a novel explainable loss function and a corresponding Matrix Factorization-based model called Explainable Bayesian Personalized Ranking (EBPR) that generates recommendations along with item-based explanations. Then, we theoretically quantify additional exposure bias resulting from the explainability, and use it as a basis to propose an unbiased estimator for the ideal EBPR loss. The result is a more » ranking model that aptly captures both debiased and explainable user preferences. Finally, we perform an empirical study on three real-world datasets that demonstrate the advantages of our proposed models. « less
Authors:
Award ID(s):
2026584
Publication Date:
NSF-PAR ID:
10284599
Journal Name:
Proceedings of the ACM Conference on Recommender Systems (ACM RecSys)
Sponsoring Org:
National Science Foundation
More Like this
  1. Recommender systems learn from past user preferences in order to predict future user interests and provide users with personalized suggestions. Previous research has demonstrated that biases in user profiles in the aggregate can influence the recommendations to users who do not share the majority preference. One consequence of this bias propagation effect is miscalibration, a mismatch between the types or categories of items that a user prefers and the items provided in recommendations. In this paper, we conduct a systematic analysis aimed at identifying key characteristics in user profiles that might lead to miscalibrated recommendations. We consider several categories ofmore »profile characteristics, including similarity to the average user, propensity towards popularity, profile diversity, and preference intensity. We develop predictive models of miscalibration and use these models to identify the most important features correlated with miscalibration, given different algorithms and dataset characteristics. Our analysis is intended to help system designers predict miscalibration effects and to develop recommendation algorithms with improved calibration properties.« less
  2. This paper reports our recent practice of recommending articles to cold-start users at Tencent. Transferring knowledge from information-rich domains to help user modeling is an effective way to address the user-side cold-start problem. Our previous work demonstrated that general-purpose user embeddings based on mobile app usage helped article recommendations. However, high-dimensional embeddings are cumbersome for online usage, thus limiting the adoption. On the other hand, user clustering, which partitions users into several groups, can provide a lightweight, online-friendly, and explainable way to help recommendations. Effective user clustering for article recommendations based on mobile app usage faces unique challenges, including (1)more »the gap between an active user’s behavior of mobile app usage and article reading, and (2) the gap between mobile app usage patterns of active and cold-start users. To address the challenges, we propose a tailored Dual Alignment User Clustering (DAUC) model, which applies a sample-wise contrastive alignment to liminate the gap between active users’ mobile app usage and article reading behavior, and a distribution-wise adversarial alignment to eliminate the gap between active users’ and cold-start users’ app usage behavior. With DAUC, cold-start recommendation-optimized user clustering based on mobile app usage can be achieved. On top of the user clusters, we further build candidate generation strategies, real-time features, and corresponding ranking models without much engineering difficulty. Both online and offline experiments demonstrate the effectiveness of our work.« less
  3. Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion hasmore »recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance the tensor completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods.« less
  4. Though recommender systems are defined by personalization, recent work has shown the importance of additional, beyond-accuracy objectives, such as fairness. Because users often expect their recommendations to be purely personalized, these new algorithmic objectives must be communicated transparently in a fairness-aware recommender system. While explanation has a long history in recommender systems research, there has been little work that attempts to explain systems that use a fairness objective. Even though the previous work in other branches of AI has explored the use of explanations as a tool to increase fairness, this work has not been focused on recommendation. Here, wemore »consider user perspectives of fairness-aware recommender systems and techniques for enhancing their transparency. We describe the results of an exploratory interview study that investigates user perceptions of fairness, recommender systems, and fairness-aware objectives. We propose three features – informed by the needs of our participants – that could improve user understanding of and trust in fairness-aware recommender systems.« less
  5. Machine learning (ML) methods, such as artificial neural networks (ANN), k-nearest neighbors (kNN), random forests (RF), support vector machines (SVM), and boosted decision trees (DTs), may offer stronger predictive performance than more traditional, parametric methods, such as linear regression, multiple linear regression, and logistic regression (LR), for specific mapping and modeling tasks. However, this increased performance is often accompanied by increased model complexity and decreased interpretability, resulting in critiques of their “black box” nature, which highlights the need for algorithms that can offer both strong predictive performance and interpretability. This is especially true when the global model and predictions formore »specific data points need to be explainable in order for the model to be of use. Explainable boosting machines (EBM), an augmentation and refinement of generalize additive models (GAMs), has been proposed as an empirical modeling method that offers both interpretable results and strong predictive performance. The trained model can be graphically summarized as a set of functions relating each predictor variable to the dependent variable along with heat maps representing interactions between selected pairs of predictor variables. In this study, we assess EBMs for predicting the likelihood or probability of slope failure occurrence based on digital terrain characteristics in four separate Major Land Resource Areas (MLRAs) in the state of West Virginia, USA and compare the results to those obtained with LR, kNN, RF, and SVM. EBM provided predictive accuracies comparable to RF and SVM and better than LR and kNN. The generated functions and visualizations for each predictor variable and included interactions between pairs of predictor variables, estimation of variable importance based on average mean absolute scores, and provided scores for each predictor variable for new predictions add interpretability, but additional work is needed to quantify how these outputs may be impacted by variable correlation, inclusion of interaction terms, and large feature spaces. Further exploration of EBM is merited for geohazard mapping and modeling in particular and spatial predictive mapping and modeling in general, especially when the value or use of the resulting predictions would be greatly enhanced by improved interpretability globally and availability of prediction explanations at each cell or aggregating unit within the mapped or modeled extent.« less