skip to main content


Title: CALM: Consistent Adaptive Local Marginal for Marginal Release under Local Differential Privacy
Marginal tables are the workhorse of capturing the correlations among a set of attributes. We consider the problem of constructing marginal tables given a set of user’s multi-dimensional data while satisfying Local Differential Privacy (LDP), a privacy notion that protects individual user’s privacy without relying on a trusted third party. Existing works on this problem perform poorly in the high-dimensional setting; even worse, some incur very expensive computational overhead. In this paper, we propose CALM, Consistent Adaptive Local Marginal, that takes advantage of the careful challenge analysis and performs consistently better than existing methods. More importantly, CALM can scale well with large data dimensions and marginal sizes. We conduct extensive experiments on several real world datasets. Experimental results demonstrate the effectiveness and efficiency of CALM over existing methods.  more » « less
Award ID(s):
1640374
NSF-PAR ID:
10098306
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CCS '18 Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
Page Range / eLocation ID:
212 to 229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The marginal likelihood of a model is a key quantity for assessing the evidence provided by the data in support of a model. The marginal likelihood is the normalizing constant for the posterior density, obtained by integrating the product of the likelihood and the prior with respect to model parameters. Thus, the computational burden of computing the marginal likelihood scales with the dimension of the parameter space. In phylogenetics, where we work with tree topologies that are high-dimensional models, standard approaches to computing marginal likelihoods are very slow. Here, we study methods to quickly compute the marginal likelihood of a single fixed tree topology. We benchmark the speed and accuracy of 19 different methods to compute the marginal likelihood of phylogenetic topologies on a suite of real data sets under the JC69 model. These methods include several new ones that we develop explicitly to solve this problem, as well as existing algorithms that we apply to phylogenetic models for the first time. Altogether, our results show that the accuracy of these methods varies widely, and that accuracy does not necessarily correlate with computational burden. Our newly developed methods are orders of magnitude faster than standard approaches, and in some cases, their accuracy rivals the best established estimators.

     
    more » « less
  2. Multi-dimensional analytical (MDA) queries are often issued against a fact table with predicates on (categorical or ordinal) dimensions and aggregations on one or more measures. In this paper, we study the problem of answering MDA queries under local differential privacy (LDP). In the absence of a trusted agent, sensitive dimensions are encoded in a privacy preserving (LDP) way locally before being sent to the data collector. The data collector estimates the answers to MDA queries, based on the encoded dimensions. We propose several LDP encoders and estimation algorithms, to handle a large class of MDA queries with different types of predicates and aggregation functions. Our techniques are able to answer these queries with tight error bounds and scale well in high-dimensional settings (i.e., error is polylogarithmic in dimension sizes). We conduct experiments on real and synthetic data to verify our theoretical results, and compare our solution with marginal-estimation based solutions. 
    more » « less
  3. We study the pairwise and mutual independence testing problem for multivariate functional data. Using a basis representation of functional data, we reduce this problem to testing the independence of multivariate data, which may be high-dimensional. For pairwise independence, we apply tests based on distance and Hilbert-Schmidt covariances as well as their marginal versions, which aggregate these covariances for coordinates of random processes. In the case of mutual independence, we study asymmetric and symmetric aggregating measures of pairwise dependence. A theoretical justification of the test procedures is established. In extensive simulation studies and examples based on a real economic data set, we investigate and compare the performance of the tests in terms of size control and power. An important finding is that tests based on distance and Hilbert-Schmidt covariances are usually more powerful than their marginal versions under linear dependence, while the reverse is true under non-linear dependence. 
    more » « less
  4. Top-k frequent items detection is a fundamental task in data stream mining. Many promising solutions are proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-k items. Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task without proper protection, since their contributed local data streams may continually leak sensitive individual information. However, most existing works solely focus on addressing either the memory-efficiency problem or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory efficiency, privacy protection, and detection accuracy.

    In this paper, we present a novel framework HG-LDP to achieve accurate Top-k item detection at bounded memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques will lead to an inferior accuracy-privacy-memory efficiency tradeoff. Therefore, we instantiate three advanced schemes under the framework by designing novel LDP randomization methods, which address the hurdles caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a superior accuracy-privacy-memory efficiency tradeoff, saving 2300× memory over baseline methods when the item domain size is 41,270. Our code is anonymously open-sourced via the link.

     
    more » « less
  5. null (Ed.)
    Background The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be trained using data from all users while only storing a user’s data on that user’s device. By keeping data on users’ devices, federated learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning in the mobile health (mHealth) domain. Objective We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated learning in an mHealth context, apply a simulation of federated learning to an mHealth data set, and compare the performance of federated learning with the performance of other predictive models. Methods We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model with those from a centralized or server model and with the results from training individual models for each subject. Results In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2% accuracy on average, and the individual model achieved 90.2% accuracy on average. Conclusions Our findings support the potential for using federated learning in mHealth. The results showed that the federated model performed better than a model trained separately on each individual and nearly as well as the server model. As federated learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods. 
    more » « less