- PAR ID:
- 10098388
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Metal phosphides are promising catalysts for hydrocarbon transformations, but computational screening is complicated by their diverse structures and compositions. To disentangle structural from compositional contributions, here we explore the metal-rich M 2 P (M = Fe, Co, Ni, Cu, Mo, Ru, Rh, Pd, Ag, Pt) series in hexagonal and orthorhombic structures that are common to a subset of these materials, using supercell density functional theory (DFT). To understand the contribution of metal choice to utility for catalytic ethane dehydrogenation (EDH), we compute and compare the adsorption of key EDH intermediates across low-index surface terminations. These materials expose both metal and phosphide sites. Calculations show that binding energies at metal sites correlate with the bulk metals, with P incorporation either enhancing or suppressing binding. Phosphide sites compete with metal sites for adsorbates and tend to suppress overactivation by destabilizing highly dehydrogenated species engaging in C–H bond breaking. Results are generally insensitive to bulk structure and surface facet. Results suggest metal-rich Pd phosphides to have favorable adsorption characteristics for catalytic dehydrogenation, consistent with recent observations.more » « less
-
A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal–organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sor- bent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experi- mentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery.more » « less
-
Metal–organic frameworks (MOFs) are crystalline materials that self-assemble from inorganic nodes and organic linkers, and isoreticular chemistry allows for modular and synthetic reagents of various sizes. In this study, a MOF’s components—metal nodes and organic linkers—are constructed in a coarse-grained model from isotropic beads, retaining the basic symmetries of the molecular components. Lennard-Jones and Weeks– Chandler–Andersen pair potentials are used to model attractive and repulsive particle interactions, respectively. We analyze the crystallinity of the self-assembled products and explore the role of modulators—molecules that compete with the organic linkers in binding to the metal nodes, and which we construct analogously—during the selfassembly process of defect-engineered MOFs. Coarse-grained simulation allows for the uncoupling of experimentally interdependent variables to broadly map and determine essential MOF self-assembly conditions, among which are properties of the modulator: binding strength, size (steric hindrance), and concentration. Of these, the simulated modulator’s binding strength has the most pronounced effect on the resulting MOF’s crystal size.more » « less
-
Abstract Optical binding of metal nanoparticles (NPs) provides a promising way to create tunable photonic materials and devices, where the ultrastrong interparticle interaction is generally attributed to the localized surface plasmon resonances of NPs. Here, it is revealed that the optical binding of metal NPs can be self‐reinforced by the plasmonic surface lattice resonances (PSLRs) associated with the discrete NP arrays. Through simulations and experiments, it is demonstrated that PSLRs can spontaneously arise in optically bound gold NP chains with just a few NPs when they are relatively large, e.g., 150 nm in diameter. Additionally, the PSLRs are enhanced by increasing the chain length, leading to stronger optical binding stiffness. These results reveal a previously unidentified factor that contributes to the ultrastrong optical binding of metal NPs. More importantly, this study presents a prospect for building freestanding and reconfigurable NP arrays that naturally support PLSRs for sensing and other applications.
-
One of the key challenges in separation science is the lack of precise ion separation methods and mechanistic understanding crucial for efficiently recovering critical materials from complex aqueous matrices. Herein, first‐principles electronic structure calculations and in situ Raman spectroscopy are studied to elucidate the factors governing ion discrimination in an adsorptive membrane specifically designed for transition metal ion separation. Density functional theory calculations and in situ Raman data jointly reveal the thermodynamically favorable binding preferences and detailed adsorption mechanisms for competing ions. How membrane binding preferences correlate with the electronic properties of ligands is explored, such as orbital hybridization and electron localization. The findings underscore the importance of the phenolate group in oxime ligands for achieving high selectivity among competing transition metal ions. In‐depth understanding on which specific atomistic site within the microenvironment of metal‐ligand binding pockets governs the ion discrimination behaviors of the host will build a solid foundation to guide the rational design of next‐generation materials for precision separation essential for energy technologies and environment remediation. In tandem, synthetic controllability is demonstrated to transform 3D micrometer‐scale crystals to a 2D crystalline selective layer in membranes, paving the way for more precise and sustainable advances in separation science.