skip to main content


Title: Sharp Finiteness Principles For Lipschitz Selections
Let (M,ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness constant.  more » « less
Award ID(s):
1700180
NSF-PAR ID:
10098555
Author(s) / Creator(s):
Date Published:
Journal Name:
Geometric and functional analysis
Volume:
28
Issue:
6
ISSN:
1016-443X
Page Range / eLocation ID:
1641-1705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Buchin, Kevin ; Colin de Verdiere, Eric (Ed.)
    In this paper, we prove a two-sided variant of the Kirszbraun theorem. Consider an arbitrary subset X of Euclidean space and its superset Y. Let f be a 1-Lipschitz map from X to ℝ^m. The Kirszbraun theorem states that the map f can be extended to a 1-Lipschitz map ̃ f from Y to ℝ^m. While the extension ̃ f does not increase distances between points, there is no guarantee that it does not decrease distances significantly. In fact, ̃ f may even map distinct points to the same point (that is, it can infinitely decrease some distances). However, we prove that there exists a (1 + ε)-Lipschitz outer extension f̃:Y → ℝ^{m'} that does not decrease distances more than "necessary". Namely, ‖f̃(x) - f̃(y)‖ ≥ c √{ε} min(‖x-y‖, inf_{a,b ∈ X} (‖x - a‖ + ‖f(a) - f(b)‖ + ‖b-y‖)) for some absolutely constant c > 0. This bound is asymptotically optimal, since no L-Lipschitz extension g can have ‖g(x) - g(y)‖ > L min(‖x-y‖, inf_{a,b ∈ X} (‖x - a‖ + ‖f(a) - f(b)‖ + ‖b-y‖)) even for a single pair of points x and y. In some applications, one is interested in the distances ‖f̃(x) - f̃(y)‖ between images of points x,y ∈ Y rather than in the map f̃ itself. The standard Kirszbraun theorem does not provide any method of computing these distances without computing the entire map ̃ f first. In contrast, our theorem provides a simple approximate formula for distances ‖f̃(x) - f̃(y)‖. 
    more » « less
  2. Abstract May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ 4– o (1) but not O ( δ 4 ). Let M ( δ ) be the maximum number such that the following holds: for every ∊ > 0 and $G = {\mathbb{F}}_2^n$ with n sufficiently large, if A ⊆ G × G with A ≥ δ | G | 2 , then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” ( x , y ), ( x + d , y ), ( x , y + d ) ∈ A is at least ( M ( δ )–∊)| G | 2 . As a corollary via a recent result of Mandache, we conclude that M ( δ ) = δ 4– o (1) and M ( δ ) = ω ( δ 4 ). On the other hand, for 0 < δ < 1/2 and sufficiently large N , there exists A ⊆ [ N ] 3 with | A | ≥ δN 3 such that for every d ≠ 0, the number of corners ( x , y , z ), ( x + d , y , z ), ( x , y + d , z ), ( x , y , z + d ) ∈ A is at most δ c log(1/ δ ) N 3 . A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3. 
    more » « less
  3. Abstract We study integral points on varieties with infinite étale fundamental groups. More precisely, for a number field $F$ and $X/F$ a smooth projective variety, we prove that for any geometrically Galois cover $\varphi \colon Y \to X$ of degree at least $2\dim (X)^{2}$, there exists an ample line bundle $\mathscr{L}$ on $Y$ such that for a general member $D$ of the complete linear system $|\mathscr{L}|$, $D$ is geometrically irreducible and any set of $\varphi (D)$-integral points on $X$ is finite. We apply this result to varieties with infinite étale fundamental group to give new examples of irreducible, ample divisors on varieties for which finiteness of integral points is provable. 
    more » « less
  4. Let g \mathfrak {g} be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g \mathfrak {g} -modules Y ( χ , η ) Y(\chi , \eta ) introduced by Kostant. We prove that the set of all contravariant forms on Y ( χ , η ) Y(\chi , \eta ) forms a vector space whose dimension is given by the cardinality of the Weyl group of g \mathfrak {g} . We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M ( χ , η ) M(\chi , \eta ) introduced by McDowell. 
    more » « less
  5. Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g -modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I T of objects in $${\mathbb {T}}$$ T which are free as I -modules. Our main result is that the category $${}_I{\mathbb {T}}$$ I T is also Koszul, and moreover that $${}_I{\mathbb {T}}$$ I T is universal among abelian $${\mathbb {C}}$$ C -linear tensor categories generated by two objects X , Y with fixed subobjects $$X'\hookrightarrow X$$ X ′ ↪ X , $$Y'\hookrightarrow Y$$ Y ′ ↪ Y and a pairing $$X\otimes Y\rightarrow {\mathbf{1 }}$$ X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $${\mathbb {T}}$$ T and $${}_I{\mathbb {T}}$$ I T . 
    more » « less