The communication class UPP cc is a communication analog of the Turing Machine complexity class PP . It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds. For a communication problem f , let f ∧ f denote the function that evaluates f on two disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with UPP cc ( f ) = O (log n ), and UPP cc ( f ∧ f ) = Θ (log 2 n ). This is the first result showing that UPP communication complexity can increase by more than a constant factor under intersection. We view this as a first step toward showing that UPP cc , the class of problems with polylogarithmic-cost UPP communication protocols, is not closed under intersection. Our result shows that the function class consisting of intersections of two majorities on n bits has dimension complexity n Omega Ω(log n ) . This matches an upper bound of (Klivans, O’Donnell, and Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn this class of functions in polynomial time. 
                        more » 
                        « less   
                    
                            
                            Log-rank and lifting for AND-functions
                        
                    
    
            Let f: {0, 1}n → {0, 1} be a boolean function, and let f∧(x, y) = f(x ∧ y) denote the AND-function of f, where x ∧ y denotes bit-wise AND. We study the deterministic communication complexity of f∧ and show that, up to a logn factor, it is bounded by a polynomial in the logarithm of the real rank of the communication matrix of f∧. This comes within a logn factor of establishing the log-rank conjecture for AND-functions with no assumptions on f. Our result stands in contrast with previous results on special cases of the log-rank conjecture, which needed significant restrictions on f such as monotonicity or low F2-degree. Our techniques can also be used to prove (within a logn factor) a lifting theorem for AND-functions, stating that the deterministic communication complexity of f∧ is polynomially related to the AND-decision tree complexity of f. The results rely on a new structural result regarding boolean functions f: {0, 1}n → {0, 1} with a sparse polynomial representation, which may be of independent interest. We show that if the polynomial computing f has few monomials then the set system of the monomials has a small hitting set, of size poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials f: {0, 1}n → with a larger range. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2006443
- PAR ID:
- 10323835
- Date Published:
- Journal Name:
- Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
- Page Range / eLocation ID:
- 197–208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The communication class UPP^{cc} is a communication analog of the Turing Machine complexity class PP. It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds. For a communication problem f, let f wedge f denote the function that evaluates f on two disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with UPP^{cc}(f)= O(log n), and UPP^{cc}(f wedge f) = Theta(log^2 n). This is the first result showing that UPP communication complexity can increase by more than a constant factor under intersection. We view this as a first step toward showing that UPP^{cc}, the class of problems with polylogarithmic-cost UPP communication protocols, is not closed under intersection. Our result shows that the function class consisting of intersections of two majorities on n bits has dimension complexity n^{Omega(log n)}. This matches an upper bound of (Klivans, O'Donnell, and Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn this class of functions in polynomial time.more » « less
- 
            We introduce and study the notion of *an outer bi-Lipschitz extension* of a map between Euclidean spaces. The notion is a natural analogue of the notion of *a Lipschitz extension* of a Lipschitz map. We show that for every map f there exists an outer bi-Lipschitz extension f′ whose distortion is greater than that of f by at most a constant factor. This result can be seen as a counterpart of the classic Kirszbraun theorem for outer bi-Lipschitz extensions. We also study outer bi-Lipschitz extensions of near-isometric maps and show upper and lower bounds for them. Then, we present applications of our results to prioritized and terminal dimension reduction problems, described next. We prove a *prioritized* variant of the Johnson–Lindenstrauss lemma: given a set of points X⊂ ℝd of size N and a permutation (”priority ranking”) of X, there exists an embedding f of X into ℝO(logN) with distortion O(loglogN) such that the point of rank j has only O(log3 + ε j) non-zero coordinates – more specifically, all but the first O(log3+ε j) coordinates are equal to 0; the distortion of f restricted to the first j points (according to the ranking) is at most O(loglogj). The result makes a progress towards answering an open question by Elkin, Filtser, and Neiman about prioritized dimension reductions. We prove that given a set X of N points in ℜd, there exists a *terminal* dimension reduction embedding of ℝd into ℝd′, where d′ = O(logN/ε4), which preserves distances ||x−y|| between points x∈ X and y ∈ ℝd, up to a multiplicative factor of 1 ± ε. This improves a recent result by Elkin, Filtser, and Neiman. The dimension reductions that we obtain are nonlinear, and this nonlinearity is necessary.more » « less
- 
            null (Ed.)Boolean functions play an important role in many different areas of computer science. The _local sensitivity_ of a Boolean function $$f:\{0,1\}^n\to \{0,1\}$$ on an input $$x\in\{0,1\}^n$$ is the number of coordinates whose flip changes the value of $f(x)$, i.e., the number of i's such that $$f(x)\not=f(x+e_i)$$, where $$e_i$$ is the $$i$$-th unit vector. The _sensitivity_ of a Boolean function is its maximum local sensitivity. In other words, the sensitivity measures the robustness of a Boolean function with respect to a perturbation of its input. Another notion that measures the robustness is block sensitivity. The _local block sensitivity_ of a Boolean function $$f:\{0,1\}^n\to \{0,1\}$ on an input $$x\in\{0,1\}^n$$ is the number of disjoint subsets $$I$$ of $$\{1,..,n\}$$ such that flipping the coordinates indexed by $$I$$ changes the value of $f(x)$$, and the _block sensitivity_ of $$f$$ is its maximum local block sensitivity. Since the local block sensitivity is at least the local sensitivity for any input $$x$$, the block sensitivity of $$f$$ is at least the sensitivity of $$f$$.The next example demonstrates that the block sensitivity of a Boolean function is not linearly bounded by its sensitivity. Fix an integer $$k\ge 2$$ and define a Boolean function $$f:\{0,1\}^{2k^2}\to\{0,1\}$$ as follows: the coordinates of $$x\in\{0,1\}^{2k^2}$$ are split into $$k$$ blocks of size $2k$ each and $f(x)=1$ if and only if at least one of the blocks contains exactly two entries equal to one and these entries are consecutive. While the sensitivity of the function $$f$$ is $2k$, its block sensitivity is $k^2$. The Sensitivity Conjecture, made by Nisan and Szegedy in 1992, asserts that the block sensitivity of a Boolean function is polynomially bounded by its sensivity. The example above shows that the degree of such a polynomial must be at least two.The Sensitivity Conjecture has been recently proven by Huang in [Annals of Mathematics 190 (2019), 949-955](https://doi.org/10.4007/annals.2019.190.3.6). He proved the following combinatorial statement that implies the conjecture (with the degree of the polynomial equal to four): any subset of more than half of the vertices of the $$n$$-dimensional cube $$\{0,1\}^n$$ induces a subgraph that contains a vertex with degree at least $$\sqrt{n}$$. The present article extends this result as follows: every Cayley graph with the vertex set $$\{0,1\}^n$$ and any generating set of size $$d$$ (the vertex set is viewed as a vector space over the binary field) satisfies that any subset of more than half of its vertices induces a subgraph that contains a vertex of degree at least $$\sqrt{d}$$. In particular, when the generating set consists of the $$n$$ unit vectors, the Cayley graph is the $$n$$-dimensional hypercube.more » « less
- 
            Let X =G/Γ, where G is a connected Lie group and Γ is a lattice in G. Let O be an open subset of X, and let F = {g_t : t ≥ 0} be a one-parameter subsemigroup of G. Consider the set of points in X whose F-orbit misses O; it has measure zero if the flow is ergodic. It has been conjectured that, assuming ergodicity, this set has Hausdorff dimension strictly smaller than the dimension of X. This conjecture has been proved when X is compact or when G is a simple Lie group of real rank 1, or, most recently, for certain flows on the space of lattices. In this paper we prove this conjecture for arbitrary Addiagonalizable flows on irreducible quotients of semisimple Lie groups. The proof uses exponential mixing of the flow together with the method of integral inequalities for height functions on G/Γ. We also derive an application to jointly Dirichlet-Improvable systems of linear forms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    