skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Penning-Trap Mass Measurements in Atomic and Nuclear Physics
Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ m/ m=10 −8 , the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics.  more » « less
Award ID(s):
1713857
PAR ID:
10098558
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Review of Nuclear and Particle Science
Volume:
68
Issue:
1
ISSN:
0163-8998
Page Range / eLocation ID:
45 to 74
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precise and accurate atomic mass data provide crucial information for applications in a wide range of fields in physics and beyond, including astrophysics, nuclear structure, particle and neutrino physics, fundamental symmetries, chemistry, and metrology. The most precise atomic mass measurements are performed on charged particles confined in a Penning trap. Here, we describe the development, status, and outlook of CHIP-TRAP: the Central Michigan University high-precision Penning trap. CHIP-TRAP aims to perform ultra-high precision (∼1 part in 1011 fractional precision) mass measurements on stable and long-lived isotopes produced with external ion sources and transported to the Penning traps. Along the way, ions of a particular m/q are selected with a multi-reflection time-of-flight mass separator (MR-TOF-MS), with further filtering performed in a cylindrical capture trap before the ions are transported to a pair of hyperbolic measurement traps. In this paper, we report on the design and status of CHIP-TRAP and present results from the commissioning of the ion sources, MR-TOF-MS, and capture trap. We also provide an outlook on the continued development and commissioning of CHIP-TRAP. 
    more » « less
  2. The single-ion Penning trap (SIPT) at the Low-Energy Beam Ion Trapping Facility has been developed to perform precision Penning trap mass measurements of single ions, ideal for the study of exotic nuclei available only at low rates at the Facility for Rare Isotope Beams (FRIB). Single-ion signals are very weak—especially if the ion is singly charged—and the few meaningful ion signals must be disentangled from an often larger noise background. A useful approach for simulating Fourier transform ion cyclotron resonance signals is outlined and shown to be equivalent to the established yet computationally intense method. Applications of supervised machine learning algorithms for classifying background signals are discussed, and their accuracies are shown to be ≈65% for the weakest signals of interest to SIPT. Additionally, a deep neural network capable of accurately predicting important characteristics of the ions observed by their image charge signal is discussed. Signal classification on an experimental noise dataset was shown to have a false-positive classification rate of 10.5%, and 3.5% following additional filtering. The application of the deep neural network to an experimental 85Rb+ dataset is presented, suggesting that SIPT is sensitive to single-ion signals. Lastly, the implications for future experiments are discussed. 
    more » « less
  3. The ability to prepare molecular ions in selected quantum states enables studies in areas such as chemistry, metrology, spectroscopy, quantum information, and precision measurements. Here, we demonstrate (2 + 1) resonance-enhanced multiphoton ionization (REMPI) of oxygen, both in a molecular beam and in an ion trap. The two-photon transition in the REMPI spectrum is rotationally resolved, allowing ionization from a selected rovibrational state of O2. Fits to this spectrum determine spectroscopic parameters of the O2d1Πg state and resolve a discrepancy in the literature regarding its band origin. The trapped molecular ions are cooled by co-trapped atomic ions. Fluorescence mass spectrometry nondestructively demonstrates the presence of the photoionized O2+. We discuss strategies for maximizing the fraction of ions produced in the ground rovibrational state. For (2 + 1) REMPI through the d1Πg state, we show that the Q(1) transition is preferred for neutral O2 at rotational temperatures below 50 K, while the O(3) transition is more suitable at higher temperatures. The combination of state-selective loading and nondestructive detection of trapped molecular ions has applications in optical clocks, tests of fundamental physics, and control of chemical reactions. 
    more » « less
  4. Rapid progress in atomic, molecular, and optical (AMO) physics techniques enabled the creation of ultracold samples of molecular species and opened opportunities to explore chemistry in the ultralow temperature regime. In particular, both the external and internal quantum degrees of freedom of the reactant atoms and molecules are controlled, allowing studies that explored the role of the long-range potential in ultracold reactions. The kinetics of these reactions have typically been determined using the loss of reactants as proxies. To extend such studies into the short-range, we developed an experimental apparatus that combines the production of quantum-state-selected ultracold KRb molecules with ion mass and kinetic energy spectrometry, and directly observed KRb + KRb reaction intermediates and products [M.-G. Hu and Y. Liu, et al. , Science , 2019, 366 , 1111]. Here, we present the apparatus in detail. For future studies that aim for detecting the quantum states of the reaction products, we demonstrate a photodissociation based scheme to calibrate the ion kinetic energy spectrometer at low energies. 
    more » « less
  5. Significant advances in Penning trap measurements of atomic masses and mass ratios of the proton, deuteron, triton, helion, and alpha-particle have occurred in the last five years. These include a measurement of the mass of the deuteron against 12C with 8.5 × 10−12 fractional uncertainty; resolution of vibrational levels of H2+ as mass and the application of a simultaneous measurement technique to the H2+/D+ cyclotron frequency ratio, yielding a deuteron/proton mass ratio at 5 × 10−12; new measurements of HD+/3He+, HD+/T+, and T+/3He+ leading to a tritium beta-decay Q-value with an uncertainty of 22 meV, and atomic masses of the helion and triton at 13 × 10−12; and a new measurement of the mass of the alpha-particle against 12C at 12 × 10−12. Some of these results are in strong disagreement with previous values in the literature. Their impact in determining a precise proton/electron mass ratio and electron atomic mass from spectroscopy of the HD+ molecular ion is also discussed. 
    more » « less