skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating high-resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model: Simulating High-Resolution Soil Moisture Patterns
Award ID(s):
0725019
PAR ID:
10098733
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Hydrological Processes
Volume:
29
Issue:
21
ISSN:
0885-6087
Page Range / eLocation ID:
4624 to 4637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper reviews the current state of high‐resolution remotely sensed soil moisture (SM) and evapotranspiration (ET) products and modeling, and the coupling relationship between SM and ET. SM downscaling approaches for satellite passive microwave products leverage advances in artificial intelligence and high‐resolution remote sensing using visible, near‐infrared, thermal‐infrared, and synthetic aperture radar sensors. Remotely sensed ET continues to advance in spatiotemporal resolutions from MODIS to ECOSTRESS to Hydrosat and beyond. These advances enable a new understanding of bio‐geo‐physical controls and coupled feedback mechanisms between SM and ET reflecting the land cover and land use at field scale (3–30 m, daily). Still, the state‐of‐the‐science products have their challenges and limitations, which we detail across data, retrieval algorithms, and applications. We describe the roles of these data in advancing 10 application areas: drought assessment, food security, precision agriculture, soil salinization, wildfire modeling, dust monitoring, flood forecasting, urban water, energy, and ecosystem management, ecohydrology, and biodiversity conservation. We discuss that future scientific advancement should focus on developing open‐access, high‐resolution (3–30 m), sub‐daily SM and ET products, enabling the evaluation of hydrological processes at finer scales and revolutionizing the societal applications in data‐limited regions of the world, especially the Global South for socio‐economic development. 
    more » « less
  2. The accelerating degradation of native grasslands is becoming a threat to the world’s biome supply and has raised serious environmental concerns such as desertification and dust storm. Given that the steppe grasslands, such as those located in the Inner Mongolia Plateau of north China, have a dry climatic condition, the grass growth closely relies on available soil water, which in turn depends on precipitation prior to the growing season (in particular from May to July). However, our understanding of steppe hydrology and water consumption by grasses is incomplete. In this study, the agro-hydrologic Soil Water Plant Atmosphere (SWAP) model was used to mimic the long-term variations in soil water and vegetation growth in a typical steppe grassland of north China to further understand how alterations of hydrologic processes are related to grassland degradation. A field experiment was conducted to collect the data needed to set up the model. The SWAP model was calibrated using continuous observations of soil moisture and soil temperature at various depths for a simulation period of 2014 to 2017. The results indicated that the SWAP model can be used to simulate the responses of soil moisture and vegetation growth to climates. Moreover, this study examines the water balance and chronological variations of precipitation, evapotranspiration, soil water, and runoff. This study will add new knowledge of steppe hydrologic processes into existing literature. 
    more » « less