Topographic stress and rock fracture: a two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations: TOPOGRAPHIC STRESS AND ROCK FRACTURE
More Like this
-
Abstract Topographic form stress (TFS) plays a central role in constraining the transport of the Antarctic Circumpolar Current (ACC), and thus the rate of exchange between the major ocean basins. Topographic form stress generation in the ACC has been linked to the formation of standing Rossby waves, which occur because the current is retrograde (opposing the direction of Rossby wave propagation). However, it is unclear whether TFS similarly retards current systems that are prograde (in the direction of Rossby wave propagation), which cannot arrest Rossby waves. An isopycnal model is used to investigate the momentum balance of wind-driven prograde and retrograde flows in a zonal channel, with bathymetry consisting of either a single ridge or a continental shelf and slope with a meridional excursion. Consistent with previous studies, retrograde flows are almost entirely impeded by TFS, except in the limit of flat bathymetry, whereas prograde flows are typically impeded by a combination of TFS and bottom friction. A barotropic theory for standing waves shows that bottom friction serves to shift the phase of the standing wave’s pressure field from that of the bathymetry, which is necessary to produce TFS. The mechanism is the same in prograde and retrograde flows, but is most efficient when the mean flow arrests a Rossby wave with a wavelength comparable to that of the bathymetry. The asymmetry between prograde and retrograde momentum balances implies that prograde current systems may be more sensitive to changes in wind forcing, for example associated with climate shifts.more » « less
-
null (Ed.)Abstract A micromechanics-based ductile fracture initiation theory is developed and applied for high-throughput assessment of ductile failure in plane stress. A key concept is that of inhomogeneous yielding such that microscopic failure occurs in bands with the driving force being a combination of band-resolved normal and shear tractions. The new criterion is similar to the phenomenological Mohr–Coulomb model, but the sensitivity of fracture initiation to the third stress invariant constitutes an emergent outcome of the formulation. Salient features of a fracture locus in plane stress are parametrically analyzed. In particular, it is shown that a finite shear ductility cannot be rationalized based on an isotropic theory that proceeds from first principles. Thus, the isotropic formulation is supplemented with an anisotropic model accounting for void rotation and shape change to complete the prediction of a fracture locus and compare with experiments. A wide body of experimental data from the literature is explored, and a simple procedure for calibrating the theory is outlined. Comparisons with experiments are discussed in some detail.more » « less
An official website of the United States government

