skip to main content

Title: Towards an Adaptive Multi-Modal Traffic Analytics Framework at the Edge
The Internet of Things (IoT) requires distributed, large scale data collection via geographically distributed devices. While IoT devices typically send data to the cloud for processing, this is problematic for bandwidth constrained applications. Fog and edge computing (processing data near where it is gathered, and sending only results to the cloud) has become more popular, as it lowers network overhead and latency. Edge computing often uses devices with low computational capacity, therefore service frameworks and middleware are needed to efficiently compose services. While many frameworks use a top-down perspective, quality of service is an emergent property of the entire system and often requires a bottom up approach. We define services as multi-modal, allowing resource and performance tradeoffs. Different modes can be composed to meet an application's high level goal, which is modeled as a function. We examine a case study for counting vehicle traffic through intersections in Nashville. We apply object detection and tracking to video of the intersection, which must be performed at the edge due to privacy and bandwidth constraints. We explore the hardware and software architectures, and identify the various modes. This paper lays the foundation to formulate the online optimization problem presented by the system which makes tradeoffs between the quantity of services and their quality constrained by available resources.  more » « less
Award ID(s):
1818901 1647015
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)
Page Range / eLocation ID:
511 to 516
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Internet of Things (IoT) is an emerging technology that aims to connect our environment to the internet in the same way that personal computers connected people. As this technology progresses, the IoT paradigm becomes more prevalent in our everyday lives. The nature of IoT applications necessitates devices that are low-cost, power-sensitive, integrated, unobtrusive, and interoperable with existing cloud platforms and services, for example, Amazon AWS IoT, IBM Watson IoT. As a result, these devices are often small in size, with just enough computing power needed for their specific tasks. These resource-constrained devices are often unable to implement traditional network security measures and represent a vulnerability to network attackers as a result. Few frameworks are positioned to handle the influx of this new technology and the security concerns associated with it. Current solutions fail to provide a comprehensive and multi-layer solution to these inherent IoT security vulnerabilities. This paper presents a layered approach to IoT testbed that aims to bridge multiple connection standards and cloud platforms. To solve challenges surrounding this multi-layer IoT testbed, we propose a mesh inside a mesh IoT network architecture. Our designed "edge router" incorporates two mesh networks together and performs seamlessly transmission of multi-standard packets. The proposed IoT testbed interoperates with existing multi-standards (Wi-Fi, 6LoWPAN) and segments of networks, and provides both Internet and resilient sensor coverage to the cloud platform. To ensure confidentiality and authentication of IoT devices when interoperating with multiple service platforms, we propose optimized cryptographic techniques and software frameworks for IoT devices. We propose to extend and modify the existing open-source IDS platforms such as Snort to support IoT platforms and environments. We validate the efficacy of the proposed system by evaluating its performance and effect on key system resources. The work within this testbed design and implementation provides a solid foundation for further IoT system development. 
    more » « less
  2. Deep neural networks (DNNs) are being applied to various areas such as computer vision, autonomous vehicles, and healthcare, etc. However, DNNs are notorious for their high computational complexity and cannot be executed efficiently on resource constrained Internet of Things (IoT) devices. Various solutions have been proposed to handle the high computational complexity of DNNs. Offloading computing tasks of DNNs from IoT devices to cloud/edge servers is one of the most popular and promising solutions. While such remote DNN services provided by servers largely reduce computing tasks on IoT devices, it is challenging for IoT devices to inspect whether the quality of the service meets their service level objectives (SLO) or not. In this paper, we address this problem and propose a novel approach named QIS (quality inspection sampling) that can efficiently inspect the quality of the remote DNN services for IoT devices. To realize QIS, we design a new ID-generation method to generate data (IDs) that can identify the serving DNN models on edge servers. QIS inserts the IDs into the input data stream and implements sampling inspection on SLO violations. The experiment results show that the QIS approach can reliably inspect, with a nearly 100% success rate, the service qualtiy of remote DNN services when the SLA level is 99.9% or lower at the cost of only up to 0.5% overhead. 
    more » « less
  3. Today’s problems require a plethora of analytics tasks to be conducted to tackle state-of-the-art computational challenges posed in society impacting many areas including health care, automotive, banking, natural language processing, image detection, and many more data analytics-related tasks. Sharing existing analytics functions allows reuse and reduces overall effort. However, integrating deployment frameworks in the age of cloud computing are often out of reach for domain experts. Simple frameworks are needed that allow even non-experts to deploy and host services in the cloud. To avoid vendor lock-in, we require a generalized composable analytics service framework that allows users to integrate their services and those offered in clouds, not only by one, but by many cloud compute and service providers.We report on work that we conducted to provide a service integration framework for composing generalized analytics frame-works on multi-cloud providers that we call our Generalized AI Service (GAS) Generator. We demonstrate the framework’s usability by showcasing useful analytics workflows on various cloud providers, including AWS, Azure, and Google, and edge computing IoT devices. The examples are based on Scikit learn so they can be used in educational settings, replicated, and expanded upon. Benchmarks are used to compare the different services and showcase general replicability. 
    more » « less
  4. null (Ed.)
    Internet of Things (IoT) devices are becoming increasingly prevalent in our environment, yet the process of programming these devices and processing the data they produce remains difficult. Typically, data is processed on device, involving arduous work in low level languages, or data is moved to the cloud, where abundant resources are available for Functions as a Service (FaaS) or other handlers. FaaS is an emerging category of flexible computing services, where developers deploy self-contained functions to be run in portable and secure containerized environments; however, at the moment, these functions are limited to running in the cloud or in some cases at the "edge" of the network using resource rich, Linux-based systems. In this work, we investigate NanoLambda, a portable platform that brings FaaS, high-level language programming, and familiar cloud service APIs to non-Linux and microcontroller-based IoT devices. To enable this, NanoLambda couples a new, minimal Python runtime system that we have designed for the least capable end of the IoT device spectrum, with API compatibility for AWS Lambda and S3. NanoLambda transfers functions between IoT devices (sensors, edge, cloud), providing power and latency savings while retaining the programmer productivity benefits of high-level languages and FaaS. A key feature of NanoLambda is a scheduler that intelligently places function executions across multi-scale IoT deployments according to resource availability and power constraints. We evaluate a range of applications that use NanoLambda to run on devices as small as the ESP8266 with 64KB of ram and 512KB flash storage. 
    more » « less
  5. Internet of Things (IoT), edge/fog computing, and the cloud are fueling rapid development in smart connected cities. Given the increasing rate of urbanization, the advancement of these technologies is a critical component of mitigating demand on already constrained transportation resources. Smart transportation systems are most effectively implemented as a decentralized network, in which traffic sensors send data to small low-powered devices called Roadside Units (RSUs). These RSUs host various computation and networking services. Data driven applications such as optimal routing require precise real-time data, however, data-driven approaches are susceptible to data integrity attacks. Therefore we propose a multi-tiered anomaly detection framework which utilizes spare processing capabilities of the distributed RSU network in combination with the cloud for fast, real-time detection. In this paper we present a novel real time anomaly detection framework. Additionally, we focus on implementation of our framework in smart-city transportation systems by providing a constrained clustering algorithm for RSU placement throughout the network. Extensive experimental validation using traffic data from Nashville, TN demonstrates that the proposed methods significantly reduce computation requirements while maintaining similar performance to current state of the art anomaly detection methods. 
    more » « less