skip to main content

Title: Smoothed analysis of the low-rank approach for smooth semidefinite programs
We consider semidefinite programs (SDPs) of size n with equality constraints. In order to overcome scalability issues, Burer and Monteiro proposed a factorized approach based on optimizing over a matrix Y of size nk such that X = Y Y  is the SDP variable. The advantages of such formulation are twofold: the dimension of the optimization variable is reduced, and positive semidefiniteness is naturally enforced. However, optimization in Y is non-convex. In prior work, it has been shown that, when the constraints on the factorized variable regularly define a smooth manifold, provided k is large enough, for almost all cost matrices, all second-order stationary points (SOSPs) are optimal. Importantly, in practice, one can only compute points which approximately satisfy necessary optimality conditions, leading to the question: are such points also approximately optimal? To answer it, under similar assumptions, we use smoothed analysis to show that approximate SOSPs for a randomly perturbed objective function are approximate global optima, with k scaling like the square root of the number of constraints (up to log factors). Moreover, we bound the optimality gap at the approximate solution of the perturbed problem with respect to the original problem. We particularize our results to an SDP relaxation of phase retrieval.
; ;
Award ID(s):
Publication Date:
Journal Name:
Neural Information Processing Systems (NIPS)
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider semidefinite programs (SDPs) with equality constraints. The variable to be optimized is a positive semidefinite matrix X of size n. Following the Burer‐Monteiro approach, we optimize a factor Y of size n × p instead, such that X = YYT. This ensures positive semidefiniteness at no cost and can reduce the dimension of the problem if p is small, but results in a nonconvex optimization problem with a quadratic cost function and quadratic equality constraints in Y. In this paper, we show that if the set of constraints on Y regularly defines a smooth manifold, then, despite nonconvexity, first‐ and second‐order necessary optimality conditions are also sufficient, provided p is large enough. For smaller values of p, we show a similar result holds for almost all (linear) cost functions. Under those conditions, a global optimum Y maps to a global optimum X = YYT of the SDP. We deduce old and new consequences for SDP relaxations of the generalized eigenvector problem, the trust‐region subproblem, and quadratic optimization over several spheres, as well as for the Max‐Cut and Orthogonal‐Cut SDPs, which are common relaxations in stochastic block modeling and synchronization of rotations. © 2018 Wiley Periodicals, Inc.
  2. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  3. Semidefinite programs (SDP) are important in learning and combinatorial optimization with numerous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the Burer–Monteiro factorization approach for solving SDPs. For a large class of SDPs, upon random perturbation of the cost matrix, with high probability, we show that all approximate second-order stationary points are approximate global optima for the penalty formulation of appropriately rank-constrained SDPs, as long as the number of constraints scales sub-quadratically with the desired rank. Our result is based on a simple penalty function formulation of the rank-constrained SDP along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to two applications, namely, Max-Cut and matrix completion.
  4. In the unit-cost comparison model, a black box takes an input two items and outputs the result of the comparison. Problems like sorting and searching have been studied in this model, and it has been general- ized to include the concept of priced information, where different pairs of items (say database records) have different comparison costs. These comparison costs can be arbitrary (in which case no algorithm can be close to optimal (Charikar et al. STOC 2000)), structured (for exam- ple, the comparison cost may depend on the length of the databases (Gupta et al. FOCS 2001)), or stochastic (Angelov et al. LATIN 2008). Motivated by the database setting where the cost depends on the sizes of the items, we consider the problems of sorting and batched predecessor where two non-uniform sets of items A and B are given as input. (1) In the RAM setting, we consider the scenario where both sets have n keys each. The cost to compare two items in A is a, to compare an item of A to an item of B is b, and to compare two items in B is c. We give upper and lower bounds for the case a ≤more »b ≤ c, the case that serves as a warmup for the generalization to the external-memory model. Notice that the case b = 1,a = c = ∞ is the famous “nuts and bolts” problem. ) In the Disk-Access Model (DAM), where transferring elements between disk and internal memory is the main bottleneck, we con- sider the scenario where elements in B are larger than elements in A. The larger items take more I/Os to be brought into memory, consume more space in internal memory, and are required in their entirety for comparisons. A key observation is that the complexity of sorting depends heavily on the interleaving of the small and large items in the final sorted order. If all large elements come after all small elements in the final sorted order, sorting each type separately and concatenating is optimal. However, if the set of predecessors of B in A has size k ≪ n, one must solve an associated batched predecessor problem in order to achieve optimality. We first give output-sensitive lower and upper bounds on the batched predecessor problem, and use these to derive bounds on the complexity of sorting in the two models. Our bounds are tight in most cases, and require novel generalizations of the classical lower bound techniques in external memory to accommodate the non-uniformity of keys.« less
  5. We study the classic set cover problem from the perspective of sub-linear algorithms. Given access to a collection of m sets over n elements in the query model, we show that sub-linear algorithms derived from existing techniques have almost tight query complexities. On one hand, first we show an adaptation of the streaming algorithm presented in [17] to the sub-linear query model, that returns an α-approximate cover using Õ(m(n/k)^1/(α–1) + nk) queries to the input, where k denotes the value of a minimum set cover. We then complement this upper bound by proving that for lower values of k, the required number of queries is , even for estimating the optimal cover size. Moreover, we prove that even checking whether a given collection of sets covers all the elements would require Ω(nk) queries. These two lower bounds provide strong evidence that the upper bound is almost tight for certain values of the parameter k. On the other hand, we show that this bound is not optimal for larger values of the parameter k, as there exists a (1 + ε)-approximation algorithm with Õ(mn/kε^2) queries. We show that this bound is essentially tight for sufficiently small constant ε, by establishing amore »lower bound of query complexity. Our lower-bound results follow by carefully designing two distributions of instances that are hard to distinguish. In particular, our first lower bound involves a probabilistic construction of a certain set system with a minimum set cover of size αk, with the key property that a small number of “almost uniformly distributed” modifications can reduce the minimum set cover size down to k. Thus, these modifications are not detectable unless a large number of queries are asked. We believe that our probabilistic construction technique might find applications to lower bounds for other combinatorial optimization problems.« less